Обозначим скорость автомобиля через Х км/ч. До встречи с другим автомобилем он путь Х*1=Х км. Следовательно второй автомобиль путь до встречи 100-Х. Время в пути из города в город первого автомобиля равно 100/Х ч. Время в пути из города в город второго автомобиля равно 100/(100-Х). Разница во времени по условию 50 мин или 5,6 ч. Пусть скорость первого больше скорости второго, тогда второй ехал на 50 мин дольше. Составим уравнение. 100/Х+5/6=100/(100-Х). После освобождения от знаменателей получишь квадратное уравнение 60000-600х-600х-500х+5х^2=0. Получаем x^2-340x+12000=0 Находим корни Х1=40, Х2=300. Нам подходит Х=40 к/ч. Скорость второго - 30 км/ч
2)cos124°=cos(90+34)=-sin34
3)sin242°=sin(270-28)=-cos28
4)cos196°=cos(180+16)=-cos16
5)sin175°=sin(180-5)=sin5
6)cos 235°=cos(270-35)=-cos35
7)tg 111°=tg(90+21)=-ctg21
8) ctg 215°=ctg(180+35)=ctg35
9)sin 312°=sin(270+42)=-cos42
10) cos 166°=cos(180-14)=-cos14
11)sin 290°=sin(270+20)=-cos20
12)ctg 163°=ctg(180-17)=-ctg17
13) tg 286°=tg(270+16)=-ctg16
14)cos 326°=cos(360-34)=cos34
15)sin 221°=sin(180+41)=-sin41
16) cos 306°=cos(270+36)=sin36
17) tg 187°=tg(180+7)=tg7
18) ctg 319°=ctg(360-41)=-ctg41