М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
hitman1790
hitman1790
13.01.2020 12:27 •  Алгебра

2+2-2 супер пупер сложный пример

👇
Ответ:
kostiusikao
kostiusikao
13.01.2020

ответ:2

Объяснение: решаем с начало сложение а потом вычитание: 2+2=4 и 4 -2=2

4,5(68 оценок)
Ответ:
zoggvik13ouid1r
zoggvik13ouid1r
13.01.2020

2

Гыгыгыгыгыгыгыгыгыгыгыгы

4,6(34 оценок)
Открыть все ответы
Ответ:
then3rvnyy
then3rvnyy
13.01.2020

Короче, вся задача сводится к поиску наименьшего такого значения a, так как наименьшему a соотвевствует наименьший x. Итак, путём нехитрых арифметических операция, получим, что x<=a*1000/465 и x>=a*1000/475. Теперь вся суть задачи сводится к нахождению "наилучших" делителей для тысячи в знаменателе, ведь именно тогда мы сможем найти a-наименьшее. Обобщая получим, что нам надо получить "наилучшее" деление от 10^n при x<=475*10^(n-3) и x>=(465*10^(n-3)). Предположим, что  мы смогли подобрать такой x в данном диапазоне равный x=5^k*2^i. Это невозможно так как тогда бы минимальным числом а был бы 1 и мы бы получили, что x>0, что не имеет смысла. Теперь предположим, что x=5^k*2^i*3. Тогда мы можем представить x как 4*10^(n-3)+ Очевидно, что на 10^(n-3) делится как 5^k, так и 2^i, то есть, если x действительно делится на 5^k или 2^i, то также должна делиться и часть икса, которая заменена у меня точками. Это значит, что в конце мы получим число 4*10^(n-3-i)+<любое число, не кратное 5>, или 4*10(n-3-k)+<любое число, не кратное 2>, что никогда не равно 3 так как 4>3. Теперь посмотрим, что будет, если мы найдем такое x, что x=5^k*2^i*7. Отсюда следует, что минимальное a равное 7, то есть 0.475x>=7. x>=14.7 то есть x>=15. Подставив, видим, что это правильный ответ

ответ: 15

4,8(49 оценок)
Ответ:

докажем утверждение от противного.

можно предположить, что для любых двух разных точек a и b из s найдется отличная от них точка x из s такая, что либо xa < 0,999ab, либо xb < 0,999ab.

переформулируем утверждение: для любого отрезка i с концами в s и длиной l найдется отрезок i′ с концами в s длины не более 0,999l, один из концов которого совпадает с некоторым концом i.

или, иначе говоря, i′ пересекает i.

возьмем теперь первый отрезок i1 длины l и будем брать отрезки i2, i3, …так, что ik + 1 пересекается с ik и |ik + 1| < 0,999|ik|.

все эти отрезки имеют концы в s. ломаная не короче отрезка, соединяющего ее концы, поэтому расстояние от любого конца ik до любого конца i1 не превосходит

следовательно, в квадрате 2000l × 2000l с центром в любом из концов i1 лежит бесконечное число точек s.

но из условия следует конечность их числа в любом квадрате.

4,5(59 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ