31,75; 508
Объяснение:
(an) - арифметическая прогрессия
a₁+a₂+a₃=27
a₁+a₁+d+a₁+2d=27
3(a₁+d)=27
a₁+d=9
a_1+d=a₂ => a₂=9
a₁+9+a₃=27
a₁+a₃=27-9=18
a₃=18-a₁
(bn) - геометрическая прогрессия
b₁=a₁-1
b₂=a₂-1=9-1=8
b₃=a₃+3=18-a₁+3=21-a₁
8/(a₁-1) = (21-a₁)/8
(a₁-1)(21-a₁)=64
21a₁-21-a₁²+a₁-64=0
-a₁²+22a₁-85=0
a₁²-22a₁+85=0
D=(-22)²-4*1*85= 484-340=144=12²
(a₁)₁ = (22+12)/2 = 34/2 = 17
(a₁)₂ = (22-12)/2 = 10/2 = 5
Получаем сразу две геометрические прогрессии:
1) b₁=17-1=16, b₂=8, b₃=21-17=4 => q = 8/16=1/2
S₇ = b₁(q⁷-1)/(q-1) = 16((1/2)⁷-1)/(1/2 -1) = 16(1/128 -1)/(-1/2) =
= -16*2*(-127/128)=127/4 = 31,75
2) b₁=5-1=4, b₂=8, b₃=21-5=16 => q=8/4=2
S₇ = b₁(q⁷-1)/(q-1) = 4(2⁷-1)/(2-1) = 4*(128-1)/1 = 4*127 = 508
1. q = -2.
2. 1;1/2;1/4 q = 1/2
1;3;9q = 3
2/3;1/2;3/8q = 3/4
√2; 1;√2/2q = 1/√2
3. заданная формула возможно неточно переписана или последовательность не геометрическая.
3*2n - 3 умножить на 2n или 3 возвести в степень 2n
4. q = 0,5
5. S = -0.25
6. b6 = 243.
7. 3-n,3-2n,3-3n,3-4n, 3n,3n+1,3n+2,3n+3 - єти последовательности не являются геометрическими прогрессиями
Объяснение:
1. Последовательность геометрическая т.к. а2 = а1 * q, а3 = а2 * q, где
q - одно и тоже число (знаменатель данной геометрической прогрессии)
q = а2 / а1 = -6 / 3 = -2.
4. Из формулы нахождения n-го члена геометрической прогрессии
q = а2 / а1 = 10/20 = 0,5.
5. q = а2 / а1 = -2/4 = -0,5
а5 = 4 * (-0,5)^4 = 0.25
a4 = 4 * (-0.5) ^3 = -0.5
6. b6 = b1 * q^5 = 243.