Найдите углы, образованные при пересечении двух параллельных прямых секущей, если один из углов на (20 + 10) градусов больше другого. геометрия 7 класс
1),Число √n должно быть трехзначным от 317 до 999. Тогда n будет 6-значным, а вместе как раз 9 цифр. 2) Число √n должно быть меньше 950, потому что 950^2=902500, то есть 9 повторяется в n и в √n. 3) Число √n не может кончаться на 1, 5 и 6, потому что n^2 кончаются на те же цифры. 4) Нам нужно найти наибольшее число, поэтому начинаем от 948 и идём назад до 912. 5) Если √n начинается на 9, то оно не может кончаться на 3 и на 7. И конечно пропускаем все числа с повторами цифр. Остаётся немного чисел: 948,943,938,934,932,928,924, 918,914,912. Они все не подходят. 6) Начинаем от 897 и двигаемся дальше. Довольно быстро находим: 854^2=729316
Пусть х рядов было в зале , по у мест в каждом ряду всего мест х*у=80 тогда после ремонта стало (х-3) ряда , по (у+4) мест (х-3)*(у+4)=84 х*у=80 (х-3)*(у+4)=84 ху=80 ху -3у+4х-12=84 ху=80 80-3у+4х-12=84 ху=80 ⇒ х=80/у 4х-3у =16 ху=80 ⇒ х=80/у 4*(80/у) -3у =16 (320/у) -3у -16=0 домножим на у , избавимся от знаменателя 320 -3у²-16у=0 3у²+16у-320=0 d= 256+3840= 4096 √d= 64 y=(-16+64)/6= 8 мест ⇒ x=80/8 =10 рядов у=(-16-64)/6 < 0 не подходит ответ : до ремонта было 10 рядов по 8 мест
па моему 20×10 +10х +7 вот это правильно