М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
cuper200017
cuper200017
05.07.2022 03:41 •  Алгебра

Вычислить: интеграл |8cos(4x-12)dx

👇
Ответ:
юля15102
юля15102
05.07.2022

\int{8cos(4x-12)}\, dx

выносим константу за знак интеграла

8\int{cos(4x-12)}\, dx

проведем замену переменной

u=4x-12

8\int{\frac{1}{4}cos(u)}\, du

выносим константу за знак интеграла

2\int{cos(u)}\, du

проинтегрируем косинус

2sin(u)

проведем обратную замену переменной

2sin(4x-12)

запишем конечный результат

\int{8cos(4x-12)}\, dx=2sin(4x-12)+const

4,4(52 оценок)
Открыть все ответы
Ответ:
наст55
наст55
05.07.2022

1. Распеши косинус двойного угла (косинус в квадрате х минус синус в квадрате х). 
2. Через основное тригонометрическое тождество вырази синус через косинус. 
3. Упрости вырожение, приведи подобные, заменив косинус х на а, должно плучиться квадратное уравнение (6а(в квадрате)-5а-4=0). 
4. Решаем уравнение, получаем два корня один из которых не удовлетворяет условие косинус может быть только от -1 до 1. 
5. Подставляешь полученный корень. Получаеться косинус х равно и корень. 
6. Дальше решаешь через аркосинус и все решение.

4,5(20 оценок)
Ответ:
mercurry
mercurry
05.07.2022
Дробь — это выражение вида рq , где р и q — многочлены; р — числитель, а q — знаменатель дроби. например: a−bb 2−1 где p = a−b , а q = b 2−1 ; x 2+3y 3+x где p = x 2+3 , а q = y 3+x ; y 2−1y−1 где p = y 2−1 , а q = y−1 . многочлен — это частный случай дроби. например, многочлен y 3+2y+7 равен дроби y 3+2y+71 , а дробь 3x 2+5x−15 можно записать в виде многочлена 35x 2+x− 15 . из курса мы знаем, что значение обыкновенной дроби не изменится, если ее числитель и знаменатель одновременно умножить или разделить на одно и то же отличное от нуля число. например: 35 = 3•25•2 = 610 . дроби можно преобразовывать аналогичным способом: числитель и знаменатель дроби можно умножить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби; числитель и знаменатель дроби можно разделить на один и тот же многочлен (в частности, на один и тот же одночлен, на одно и то же отличное от нуля число); это — тождественное преобразование заданной дроби, его называют сокращением дроби. данные правила называют основным свойством дроби. рассмотрим примеры. дробь x 2−xx 2 можно заменить на x−1x (числитель и знаменатель разделили на x ). дробь x 2+3xy+1 можно заменить на x 3+3x 2xy+x (числитель и знаменатель умножили на x ). дробь y 2−6y+9y 2−9 можно заменить на (y−3) 2(y−3)(y+3) = y−3y+3 (числитель и знаменатель разделили на y−3 ). равенство y 2−6y+9y 2−9 = y−3y+3 называется тождеством, а преобразование дроби y 2−6y+9y 2−9 в дробь y−3y+3— тождественным преобразованием заданной дроби, в данном случае, сокращением дроби. следует помнить, что тождеством наше равенство является при условии, что y ≠ 3 и y ≠ – 3 , так как знаменатель изначальной дроби при данных значениях переменной обращается в нуль и выражение y 2−6y+9y 2−9 теряет смысл.
4,4(32 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ