Примем работу за 1. Пусть производительность первого экскаватора (объём выполненной работы за 1 час) равна х, а второго экскаватора - у. Два экскаватора, работая совместно (х+у), могут вырыть котлован за 48 часов, то есть сделать 100% работы или 100%÷100%=1: 48(х+у)=1 (1)
Если первый проработает 40 часов, выполнив объём работы 40х, а второй 30 часов, выполнив объём работы 30у, то будет выполнено 75% работы или 75%÷100÷=0,75: 40х+30у=0,75 (2)
Составим и решим систему уравнений (методом подстановки): { 48(х+у)=1 { 40х+30у=0,75
{х+у=1/48 {40х+30у=0,75
{х=1/48-у {40х+30у=0,75
Подставим значение х во второе уравнение: 40(1/48-у)+30у=0,75 40/48-40у+30у=0,75 5/6-10у=0,75 -10у=0,75-5/6=75/100-5/6=3/4-5/6=3×3/12 - 5×2/12=9/12-10/12=-1/12 -10у=-1/12 10у=1/12 у=1/12÷10=1/120 - производительность второго экскаватора. Тогда он выполнит весь объем работы (равный 1) за: 1÷1/120=120 часов. ОТВЕТ: второй экскаватор, работая отдельно, сможет выполнить всю работу за 120 часов.
!Чтобы посчитать время работы первого экскаватора, подставим значение у в первое уравнение: х=1/48-у=1/48-1/120=5/240-2/240=3/240=1/80 1÷1/80=80 (часов)
скорость велосипедиста y км/ч .
A .C B (C - место встречи).
AC =(50/60) *x =(5/6)*x ; BC= (50/60) *y =(5/6)*y .
AB =AC +BC= (5/6) *(x + y). Вычислить время t = (5/6) *(x + y)/ y→?
((5/6)*x)/y - ((5/6)*y)/x =4 ⇔x/y -y/x =24/5. * * * 5 -1/5 * * *
(после встречи меняются путями ) ; замена x/y =z .
z -1/z =24/5 ⇔5z² -24z - 5 = 0 ⇒ z₁ =(12-13)/5= - 1/5 не решения задачи .
z₂ =(12+13)/5= 5 ⇒ x/y =5 ⇒(x+y)/y =6 .
t = (5/6) *(x + y)/y = (5/6)*6 = 5 (ч) .
ответ : Велосипедист на путь из B в A затратил 5 часов .