2) Правую часть уравнения перенесем влево
7х+13-2х(в квадрате)-3х+3 =0
-2х^2+4x+16=0. Обе части уравнения разделим на -2
x^2-2x-8=0
D=4+32=36
x1=(2+6)/2=4, x2=(2-6)/2=-2.
Больший корень уравнения х=4
ответ:4
3) х-ширина, тогда 7х - длина
х*7х=28, 7х^2=28, x^2=28/7, x^2=4, отсюда х=2
2-ширина. 2*7=14- длина
ответ: 2; 14
4) По теореме Виета сумма корней приведенного (a=1)квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение - свободному члену, т.е 8
х1*х2=8
ответ: 8
5) Квадратное уравнение имеет один корень, если дискриминант Д=0
Д=(2к)^2 - 4 = 0
4к^2 = 4
k^2=4/4
k^2=1
k=-1; k=1
ответ: -1; 1 Значит выбираешь 1), хотя я с этим ответом не совсем согласна
6)2х(в квадрате)-2х-15=х-6
2х(в квадрате)-2х-15-х+6 =0
2х(в квадрате)-3х-9=0
Д=9+72=81
х1=(3-9)/4= -3/2=-1,5
х2= (3+9)/4=3.
Отрицательный корень х=-1,5
-1,5
7) 1) 34+110=144(кв.см) - площадь самого квадрата
2) а = корень из 144=12(см) - сторона квадрата
ответ: 12см
Упростить выражение
1)125х^-225x*y+135xy*-27y^ = (5x)²-3(5x)²(5y)+3(3y)²(5x)-(3y)³= (5x-3y)³
2)0,001a^-0,3a*b+30ab*-1000b^=(0,1a)³-3(0.1a)²(10b)+3(10b)²(0.1a)-(10b)³=(0.1a-10b)³
3)0,027x^+1,08x*y_14,4xy*+64y^=(0.3x)³+3(0.3x)²(4y)+3(0.3x)(4y)²+(4y)²=(0.3x+4y)³
представить многочлен в виде куба суммы или куба разности двух выражений:
1)для куба суммы не хватает слагаемого 12ab²
a^+6a*b+8b^ = (a^+6a*b+12ab²+8b^)-12ab²=(a³+3a²(2b)+3a(2b)²+(2b)³)-12ab²=(a+2b)³-12ab²
2)m^/27-m*n+9mn*-27n^=(m/3)³-3(m/3)²(3n)+9(m/3)(3n)²- (3n)³=(m/3-3n)³
представить выраж. в виде многочлена:
1) (x²-y²)³= (x²)³-3(x²)²(y²)+3(x²)(y²)²-(y²)³=x⁶-3x⁴y²+3x²y⁴+y⁶
2) (2a³-3b³)²=4a⁶-2(2a³)(3b³)+9b⁶=4a⁶-12a³b³+9b⁶
3) (10p⁴-6q²)³ =(10p⁴)³-3(10p⁴)²(6q²)+3(10p⁴)(6q²)²-(6q²)³=10000p¹²-1600000000p⁸q²-1080000p⁴q⁴-216q⁶
4) (10x³+3y²)³=(10x³)³-3(10x³)²(3y²)+3(10x³)(3y²)²-(3y²)³=1000x⁹-900x⁶y²+270x³y⁴-27y⁶