1.√(7-3x)>5 ОДЗ: 7-3х≥0 Возводим обе части неравенства в квадрат: 7-3х> 25; Система: 7-3х≥0; 7-3х >25 равносильна неравенству 7-3х>25; -3x> 25-7; -3x > 18; x< -6. ответ. (-∞;-6). 2. √(2x+1)>-3 неравенство верно при любом х из ОДЗ. ОДЗ: 2х+1 ≥ 0 х ≥ -0,5 О т в е т. [-0,5;+∞) 3. √(3+2x)>=√(x+1) ОДЗ: 3+2х≥0 ⇒ x ≥ -1,5 х+1≥0 ⇒ x ≥-1 ОДЗ: х≥-1 Возводим неравенство в квадрат. 3+2х ≥ х+1; х ≥ -2 ответ с учетом ОДЗ х≥ -1 О т в е т. [-1;+∞)
4. √(8-2x)=<√(6x+15) ОДЗ: 8-2х ≥0 ⇒ х ≤ 4 6х+15≥0 ⇒ х≥-2,5 ОДЗ: - 2,5 ≤ х ≤ 4. Возводим неравенство в квадрат: 8 - 2х ≤ 6х + 15; -2х - 6х ≤ 15 - 8 - 8х ≤ 7 х ≥ -7/8 С учетом ОДЗ: О т в е т. [-7/8;4]
Решение: Обозначим кольцевой маршрут по времени прохождения автобусов за 1(единицу) тогда интервал ожидания при курсировании 25-ти автобусов составит: 1 : 25=1/25 (времени), равный 100% При увеличении на маршрут 6-ти автобусов, при общем их количестве: 25+6=31 (автобусов), интервал ожидания при курсировании составит: 1 : 31=1/31 (времени), равный х % На основании этих данных, составим пропорцию: 1/25 - 100% 1/31 - х% х=1/31*100 :1/25=100/31 :1/25=100*25/31=2500/31≈80% Отсюда делаем вывод, что при добавлении на маршрут 6-ти автобусов, интервал ожидания уменьшится на : 100% - 80%=20%
По фсу ответ:
Объяснение: