1. нет; 2. 1) общего вида 2) общего вида 3) общего вида 3. 1) -1; 3 2) 1; -3 4) -1
Объяснение:
1. Если функция нечетная то произведение f(3)f(-3) не будет положительным.
2.
1)
Это функция общего вида
2)
Это функция общего вида
3)
Это функция общего вида
3.
1)
Значит
2)
Значит
4.
Это биквадратное уравнение. Делаем подстановку
Уравнение будет иметь один корень, когда дискриминант равен 0
Но, поскольку х=±√у, то при любом положительном у мы получим два различных значения х. Одно значение х мы получим лишь в случае у=0. Тогда х=√0=0. Следовательно
Делаем проверку:
1) а=-1
Имеется одно решение (т.к выражение в скобках никогда не будет равно 0)
2) а=3
Здесь появляется второй корень. Значит, это значение не подходит.
Окончательно получаем решение: а=-1
Дано: ΔABC равнобедренный; AB = BC; BO высота; BN = BM.
Доказать: NO = MO.
Доказательство:
ΔBNO = ΔBMO по 1 признаку равенства треугольников (по двум сторонам и углу между ними).
BN = BM по условию;
BO общая сторона;
∠NBO = MBO, т.к. высота в равнобедренном треугольнике является медианой и биссектрисой. Высота BO является биссектрисой ∠NBM, т.е. делит его на на два равных угла.
Из равенства треугольников следует равенство соответствующих сторон. NO = MO, что и требовалось доказать.
Рисунок в приложении.
sinα = -√91/10, α∈(3п/2;2П) - это означает, что угол α находится в 4-й четверти,
cosα - положительный.
Найдем cosα по формуле: cos²α= 1 - sin²α; cos²α= 1-(-√91/10)²=1-91/100=9/100;
cosα = √(9/100)=3/10;
ответ: cosα = 3/10;