М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
mmmm52
mmmm52
17.02.2020 10:49 •  Алгебра

Cos 2x + sin(в квадрате) x = 0,25 каково решение? ?

👇
Ответ:
Leg1oner
Leg1oner
17.02.2020

cos в квадрате х - sin в квадрате х + sin  в квадрате х = 0,25

синусы сокращаются. остается:

cos в квадрате х = 0,25

(1+cos 2x)/2 = 0.25

умнажаем на два.

1+cos 2x = 0.5

cos 2x = -1/2

2x = +- arccos (-1/2) + 2Пn, n принадлежит Z

x = +- П/3 + Пn, n принадлежит Z

 

4,8(56 оценок)
Открыть все ответы
Ответ:
v201612
v201612
17.02.2020
Задача решается через систему двух уравнений с двумя переменными.
Пусть скорость третьего велосипедиста равна v км/ч, 
а t ч - время, за которое он догнал второго велосипедиста.
До встречи третий и второй велосипедисты проехали одно и то же расстояние.
По условию задачи, второй ехал на 1 час больше, чем третий.
Тогда t+1 ч - время второго
Получаем:
                Скорость (км/ч)       Время (ч)            Расстояние (км)
третий           v                           t                       v*t    
второй          21                         t+1                    21*(t+1)

Составляем первое уравнение: vt=21(t+1)

До встречи первый и третий проехали одинаковое расстояние, третий догнал первого через t+9 часов,
а первый на тот момент уже был в пути t+2+9=t+11 часов, т.к. выехал на 2 часа раньше третьего.
Получаем:
                Скорость (км/ч)       Время (ч)            Расстояние (км)
третий           v                                t+9                 v*(t+9)    
второй          24                              t+11              24*(t+11)
Составляем второе уравнение:  v(t+9)=24(t+11)

Решаем систему уравнений:
{ vt=21(t+1)   =>   v=21(t+1)/t (подставим во второе уравнение)
{ v(t+9)=24(t+11)

\frac{21(t+1)(t+9)}{t}=24(t+11)|*t \\\\21(t+1)(t+9)=24t^2+264t\\21(t^2+10t+9)=24t^2+264t\\21t^2+210t+189=24t^2+264t\\3t^2+54t-189=0|:3\\t^2+18y-63=0\\D=18^2-4*1*(-63)=576=24^2\\t_1=(-18-24)/2=-42/2=-21<0\\t_2=(-18+24)/2=6/2=3

Итак, t=3 часа 
Находим скорость третьего велосипедиста:
v= \frac{21(t+1)}{t}= \frac{21(3+1)}{3}=7*4=28 (км/ч)

ответ: 28 км/ч
4,4(92 оценок)
Ответ:
hjhytu
hjhytu
17.02.2020

По определению, \left\{\underset{n\rightarrow\infty}{lim}x_n=L\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n-L\right|

Т.к. в обоих случаях нужно обосновать, что L=0, определение преобразуется в утверждение \left\{\underset{n\rightarrow\infty}{lim}x_n=0\right\}\Leftrightarrow\forall\varepsilon 0 \ \exists N: \ \forall n\geq N\rightarrow\left|x_n\right|

2) x_n=\dfrac{a}{n}

|x_n|

А значит, если взять N=\left[\dfrac{|a|}{\varepsilon}\right] +1 (*), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|a|}{\varepsilon}

(*) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{|a|}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (*)

А это и означает, что предел данной последовательности равен 0

4)  x_n=\dfrac{2+(-1)^n}{n}

|x_n|

|2+(-1)^n|=\left\{\begin{array}{c}2-1=1,n=2k-1,k\in N \\2+1=3,n=2k,k\in N \end{array}\right. \Rightarrow |2+(-1)^n|\leq 3\; \forall n\in N

А значит, если взять N=\left[\dfrac{3}{\varepsilon}\right] +1 (**), \forall\;n\geq N\to |x_n|. И правда: \dfrac{|2+(-1)^n|}{\varepsilon}\leq\dfrac{3}{\varepsilon}< \left[\dfrac{3}{\varepsilon}\right] +1=N\leq n \Rightarrow \dfrac{|2+(-1)^n|}{\varepsilon}< n \Rightarrow |x_n|

(**) Очевидно, что для любого допустимого значения \varepsilon выражение \left[\dfrac{3}{\varepsilon}\right] +1 определено и конечно, и при этом натуральное число (как сумма неотрицательного целого числа и 1). (**)

А это и означает, что предел данной последовательности равен 0

___________________________

2) a=1. Тогда x_1=\dfrac{1}{1}=1; x_2=\dfrac{1}{2}; x_3=\dfrac{1}{3}; x_4=\dfrac{1}{4}; x_5=\dfrac{1}{5}; x_6=\dfrac{1}{6}

4)

x_1=\dfrac{2+(-1)^1}{1}=1;\;x_2=\dfrac{2+(-1)^2}{2}=1\dfrac{1}{2};\;x_3=\dfrac{2+(-1)^3}{3}=\dfrac{1}{3};\;x_4=\dfrac{2+(-1)^4}{4}=\dfrac{3}{4};\;x_5=\dfrac{2+(-1)^5}{5}=\dfrac{1}{5};\;x_6=\dfrac{2+(-1)^6}{6}=\dfrac{1}{2}.

___________________________

Обозначения и некоторые св-ва: {x} - дробная часть числа x, [x] - целая часть числа x. 0\leq \{x\}


пример 2 и 4. Все теоремы и аксиомы, будьте добры, распишите. Действий, пусть и банальных, легких не
4,6(34 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ