В решении.
Объяснение:
Задание на разность квадратов:
а² - в² = (а - в)*(а + в).
1) При каких значениях переменной x выражение (x-3)²-14² равно 0? Если таких значений несколько.
(x-3)²-14²=0
(х - 3 - 14)*(х - 3 + 14) = 0
(х - 17)*(х + 11) = 0
х - 17 = 0
х₁ = 17;
х + 11 = 0
х₂ = -11.
При х = 17 и х = -11 данное выражение равно нулю.
2) При каких значениях переменной x выражение ( x-9)²-8² равно 0? Если таких значений несколько.
( x-9)²-8²=0
(х - 9 - 8)*(х - 9 + 8) = 0
(х - 17)*(х - 1) = 0
х - 17 = 0
х₁ = 17;
х - 1 = 0
х₂ = 1.
При х = 17 и х = 1 данное выражение равно нулю.
3) При каких значениях переменной x выражение ( x-7)²-3² равно 0? Если таких значений несколько.
( x-7)²-3²=0
(х - 7 - 3)*(х - 7 + 3) = 0
(х - 10)*(х - 4) = 0
х - 10 = 0
х₁ = 10;
х - 4 = 0
х₂ = 4.
При х = 10 и х = 4 данное выражение равно нулю.
4) При каких значениях переменной x выражение ( x-9)²-17² равно 0? Если таких значений несколько.
( x-9)²-17²=0
(х - 9 - 17)*(х - 9 + 17) = 0
(х - 26)*(х + 8) = 0
х - 26 = 0
х₁ = 26;
х + 8 = 0
х₂ = -8.
При х = 26 и х = -8 данное выражение равно нулю.
Решение. Обозначим буквой s площадь, которую скашивает один косец за день. Количество косцов артели обозначим буквой n. Тогда площадь первого луга равна
ns/2 + ns/4 = 3ns/4
(n косцов работали полдня, а потом n/2 косцов работали полдня, при этом весь луг был скошен). Площадь второго луга по условию вдвое меньше, значит, она равна 3ns/8, из которых ns/4 было скошено в первый день. Таким образом, один косец за день скосил
3ns/8 – ns/4 = ns/8.
Вспомнив определение величины s, получаем n = 8.
±3
Объяснение:
Рассмотрим второе уравнение.
Левая часть не меньше 1, правая — не больше 1, значит, равенство возможно тогда и только тогда, когда когда обе части равны 1. При этом левая часть равна 1 только тогда, когда первые два слагаемых — 0, а второе — 1.
Из этого следует, что решениями системы могут быть пары вида (x, 0), где x — нечётное целое число, а параметр p — целое число.
Рассмотрим первое уравнение:
Необходимое условие для целочисленности x — дискриминант должен быть квадратом целого числа (достаточно, чтобы это число было неотрицательным), иначе корень будет иррациональным.
Так как n ≥ 0,
.
Представим 8 в виде произведения двух множителей: 8 = 1 * 8 = 2 * 4 = (-8) * (-1) = (-4) * (-2). Числа p - n и p + n имеют одинаковую чётность, поэтому варианты p - n = 1, p + n = 8; p - n = -8, p + n = -1 не подходят. Остаётся два варианта:
Проверим данные p:
Есть нечётное решение x = -1.
Есть нечётное решение x = 1.
Значит, подходят p = ±3.