Камень брошен вертикально вверх. Пока камень не упал, высота его над землей, описывается по формуле h= -t²+8t, где h- высота в метрах, t- время в секундах со времени броска. Через сколько секунд камень находился на высоте 15м? (Варианты ответов на фото) нужен правильный ответ.
(x+2a)/(x-6) = a+3. ОДЗ. x не=6. (x+2a) = (a+3)*(x-6); <=> x+ 2a = ax -6a + 3x - 18, <=> 2a+6a+18 = 3x-x + ax, <=> 8a+18 = 2x+ax, <=> 8a+18 = x*(a+2), 1. a=-2, тогда имеем 8*(-2)+18 = x*0, <=> 2=0, это ложное равенство, которое невозможно в принципе. Это означает, что в 1. решений нет. 2. a не= -2, тогда имеем. x=(8a+18)/(a+2). Единственное решение. НО нужно проверить решение на область допустимых значений (ОДЗ). (8a+18)/(a+2) не= 6, <=> (8a+18) не=6*(a+2), <=> 8a + 18 не= 6a+12; <=> 8a-6a не=12 - 18, <=> 2a не=-6, <=> a не= -6/2 = -3. a не=-3. 3. При a = -3, имеем x=6, которое не входит в ОДЗ и поэтому при а=-3 решений нет. ответ. При а=-2, или а=-3 решений нет; при a<-3 или (-3)<a<-2 или a>(-2), единственное решение x=(8a+18)/(a+2).
tg(4x) = -1/√3 = -√3/3
4x = -π/6 + πk, k∈Z
x = -π/24 + (πk/4), k∈Z
x∈[-π/2; π/2]
Найдем, при каких k корни уравнения будут принадлежать указанному в условии отрезку:
-π/2 ≤ -π/24 + (πk/4) ≤ π/2
-π/2 + π/24 ≤ πk/4 ≤ π/2 + π/24
-11π/24 ≤ πk/4 ≤ 13π/24
-11/6 ≤ k ≤ 13/6, k∈Z
k = -1, 0, 1, 2
Итого будет 4 корня.
k = -1, x1 = -π/24 - π/4 = (-π - 6π)/24 = -7π/24
k = 0, x2 = -π/24
k = 1, x3 = -π/24 + π/4 = (-π + 6π)/24 = 5π/24
k = 2, x4 = -π/24 + 2π/4 = (-π + 12π)/24 = 11π/4
ответ: -7π/24, -π/24, 5π/24, 11π/24