1=36(x+y)
1=30(x+z)
1=20(y+z)
1/36=x+z
1/30=z+x
1/20=y+z
1/36+1/30+1/20=2 (x+y+z)
x+y+z=1/72+1/60+1/40
x+y+z=1/18
ответ за 18 часов
Сначала разберём таблицу. В первой строке - значения выборки, вторая строка - показывает сколько раз каждое значение встречается в выборке. Таким образом полная выборка будет такой: 2; 5; 5; 5; 7; 7; 8; 8; 8; 8. Количество значений в выборке будет равно 10 (это обозначается так n = 10).
1) Среднее арифметическое = (2 · 1 + 5 · 3 + 7 · 2 + 8 · 4) / 10 = 6,3
2) Дисперсия обозначается S² и вычисляется по формуле: сумму разностей квадратов значения выборки и её среднего арифметического поделить на (n-1). Получаем
S² = ( (2 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (5 - 6,3)² + (7 - 6,3)² + (7 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² + (8 - 6,3)² ) / 10 - 1 = 4,01
3) Среднее квадратическое отклонение обозначается буквой ω:
ω = √S² = √4,01 = 2,002
4) Мода - это значение встречающееся в выборке чаще других, то есть
мода = 8
Если выборка содержит нечетное количество элементов, медиана равна (n+1)/2-му элементу.
Если выборка содержит четное количество элементов (как в нашем случае), медиана лежит между двумя средними элементами выборки и равна среднему арифметическому, вычисленному по этим двум элементам. То есть
медиана = (7 + 7) / 2 = 7
Пусть х часов требуется первой трубе, чтобы наполнить бассейн, у часов - второй трубе, z часов - третьей. За 1 час работы первая труба наполняет 1/х бассейна, вторая - 1/у, третья - 1/z. При одновременной работе за 1 час первая и вторая трубы наполняют 1/х+1/у или 1/36 бассейна, первая и третья - 1/х+1/z или 1/30 бассейна, а вторая и третья - 1/у+1/z или 1/20 бассейна. Составим и решим систему уравнений:
1/х+1/у=1/36
1/х+1/z=1/30
1/у+1/z=1/20
1/у=1/36-1/х
1/z=1/30-1/х
1/36-1/х+1/30-1/х=1/20
1/у=1/36-1/х
1/z=1/30-1/х
5/180+6/180-9/180=2/х
1/у=1/36-1/х
1/z=1/30-1/х
2/180=2/х
1/у=1/36-1/х
1/z=1/30-1/х
х=180
1/у=1/36-1/180
1/z=1/30-1/180
х=180
1/у=5/180-1/180
1/z=6/180-1/180
х=180
1/у=4/180
1/z=5/180
х=180
1/у=1/45
1/z=1/36
х=180
у=45
z=36
х=180
При одновременной работе трубы за 1 час наполняют:
1/180+1/45+1/36=(1+4+5)/180=10/180=1/18 (бассейна)
Значит, весь бассейн они наполнят за 1:1/18=1*18=18 (ч.)
ответ: работая одновременно, три трубы наполняют бассейн за 18 часов.