1) х = 0,25
2) х = -5
3) y= -0.6
4) y = -0.75
Объяснение:
1) x(x-4)=2+(x-1)²;
х*х + х*(-4) = 2 + (х-1)(х+1)
- 4х = 2+ х*х + х*1 - 1*х - 1*1
- 4х = 2 +
+ х - х - 1
-4х - х + х = 2 - 1
-4х = 1
х = 1/4
х = 0,25
2). (x+2)(x-3)-3=(x+1)²
х*х + х*(-3) + 2*х + 2*(-3) = (х+1)(х-1)
- 3х + 2х - 6 =
- х + х - 1
-х = 5 (умножить на -1)
х = -5
3)y(5-y)=1-(y+2)²
5у - = 1 - (y+2)(y-2)
5y - = 1 -
- 2y + 2y - 4
5y + 2y -2y = 1-4
5y = -3
y = -3/5
y = -0.6
4) (y-1)²-(y+1)(y-7)=0.
(y-1)(y+1) - + 7y + y + 7 = 0
+ y - y - 1 -
+ 7y + y + 7 = 0
8y = -6
y = -6/8
y = -0.75
Объяснение:
Задание 2.
а) Координату х=5 будут иметь все точки , лежащие на прямой , которая параллельна оси ординат и проходит через т.А на оси абсцисс. Любая другая точка координатной плоскости имеет абсциссу отличную от х=5
б) Координату у=-3 будут иметь все точки , лежащие на прямой , которая параллельна оси абсцисс и проходит через т.С на оси ординат. Любая другая точка координатной плоскости имеет ординату отличную от у=-3
рисунок 1 во вложении
Задание 3.
а) На координатной плоскости неравенство х ≥ 4 задаст полуплоскость , которая будет расположена правее прямой х=4. Все точки этой полуплоскости будут иметь абсциссу равную 4 и больше
рисунок 2 во вложении
б) Двойное неравенство 0 ≤ у ≤ 5 задает на координатной плоскости две горизонтальные полосы , которые имееют ординату 0 и 5
рисунок 3 во вложении
Задание 4.
а) у = х;
найдем точки и построим график
х=0, у=0
х=3 , у=3
х=-3, у= -3
б) –3 ≤ х ≤ 3.
неравенство задает на координатной плоскости две вертикальные полосы, которые имею абсциссу 3 и -3
Изобразим множество точек на координатной плоскости
рисунок 4 во вложении
Задание 5
Решение во вложении
Задание 6
Если | x | ≤ 5 , значит -5 ≤ х ≤ 5, т.е. х ϵ [-5 ; 5]
Отметим этот промежуток т.А и т.В на координатной прямой ( рис. 5 во вложении)
Отметим промежуток –7 ≤ x ≤ 1 , т.е. х ϵ [ -7 ; 1] на координатной прямой т.С и т. D
Для того, чтобы определить границы промежутков [-5; 5] и [-7; 1] сравним левые и правые границы этих промежутков. Поскольку -7 < -5, а 5 >1 , то искомое пересечение имеет вид: х ϵ[-5; 1]