а) 6х^2+8х-15х-20=6х^2-7х-20
б)2ух-5х^2-6у^2+15ух=17ух-5х^2-6у^2
в)а^2-5а-а^2+3а+2а-6=-6
г)8п^3-4п^2+2п+4п^2-2п+1=8п^3+1
(3-5,8x)-(2,2x+3)=16
3-5,8x-2,2x-3=16
-8x=16
x=-16/8=-2
6x-5(3x+2)=5(x-1)-8
6x-15x-10=5x-5-8
-9x-10=5x-13
5x+9x=13-10
14x=3
x=3/14
(3x+7)/2=(6x+4)/5
5(3x+7)=2(6x+4)
15x+35=12x+8
12x-15x=35-8
-3x=27
x=-27/3=-9
x/4 -(x-3)/5=-1
(5x-4(x-3))/(4*5)=-1
5x-4x+12=-20
x=-20-12
x=-32
(8x-3)/7 -(3x+1)/10=2
(10(8x-3)-7(3x+1))/(7*10)=2
80x-30-21x-7=70*2
59x-37=140
59x=140+37
x=177/59=3
(15x+27)(-5x-9)=0
15x+27=0
15x=-27
x1=-27/15=-9/5=-1 4/5=-1,8
-5x-9=0
5x+9=0
5x=-9
x2=-9/5=-1,8
ответ: x=-1,8.
|8x-4|-7=13
8x-4=13+7
8x-4=20
8x=20+4
x1=24/8=3
8x-4=-20
8x=-20+4
x2=-16/8=-2
Объяснение:
вроде так
Пусть х - любое натуральное число, тогда следующее натуральное число будет на 1 больше и так далее. Запишем пять последовательных натуральных чисел, первое из которых х: х, х + 1, х + 2, х + 3, х + 4.
Найдем сумму этих пяти чисел:
х + (х + 1) + (х + 2) + (х + 3) + (х + 4) = 5 * х + 10 = 5 * (х + 2).
Как известно произведение делятся на число 5, если хотябы один из множителей делится на число 5. Так как 5 : 5 = 1, значит последовательность пяти натуральных чисел делится нацело на 5, что и требовалось доказать.
Объяснение:)
а) ... = 6х^2+8х-15х-20=6х^2-7х-20
б) ... = 2ху-5х^2-6у^2+15ху=17ху-5х^2-6у^2
в) ... = а^2-5а-(а^2-3а-2а+6)=6
г) ... = 8п^3+1