На зачётном уроке по бегу на 1000метров мальчики 8 класса показали следующие результаты. Составьте интервальнуб таблицу с шагом, равным 5. Найдите среднее арифметическое полученных результатов (в конце 220 не зачёркнуто так и будет)
1) 3x + 2 > 1 для всех натуральных чисел - верно. 2) x^2 - 3x + 1 < 0 - да, решением является отрезок без концов (x1;x2) 3) Расстояние от точки A(x; y) до начала координат равно √(x^2 + y^2) √(7^2 + 1^2) = √(49 + 1) = √50; √(5^2 + 5^2) = √(25 + 25) = √50. Да, расстояние одинаковое. 4) Да, верно. Если произведение отрицательно, то эти числа разного знака. 5) Да, это верно. 6) Не знаю. 7) Да, это верно. Сумма углов трех треугольников 3*180° = 540° Сумма углов пятиугольника 5*180° - 2*180° = 3*180° = 540° 8) Нет, неверно. Диагонали - оси только у квадрата и ромба. 9) Площадь тр-ника S = 1/2*x*y*sin (x,y) = 1/2*2a*2b*sin (2a,2b) = a*b Отсюда sin (2a,2b) = 1/2. Да, угол между сторонами 2a и 2b равен 30°. 10) Не знаю. 11) (3+5+11)/3 = 19/3 < 7 - нет, неверно. 12) 1 < 1*√2; 2 > 1*√2 - да, верно. 13) Среднее геометрическое чисел 3 и а √(3a) < 5; 3a < 25; a < 25/3; a < 8 1/3 - нет, неверно. Числа [8; 8 1/3) тоже. 14) 0,1a + 0,3*3a = 0,1a + 0,9a = a = 0,25*4a - да, верно. 15) Да, верно. Четное число может кончаться на 2 или на 4. 142, 412, 152, 512, 172, 712, 452, 542, 472, 742, 572, 752, 124, 214, 154, 514, 174, 714, 254, 524, 274, 724, 574, 754. 16) Четные делители 1000: 2, 4, 8, 10, 20, 40, 50, 100, 200, 250, 500, 1000. Да, их ровно 12. 17) Нет, такое число будет иметь сумму цифр 3, то есть делиться на 3. 18) Кубы могут кончаться на 0, 1, 8, 7, 4, 5, 6, 3, 2, 9. Квадраты могут кончаться на 0, 1, 4, 9, 6, 5, 6, 9, 4, 1. Разность куба и квадрата одного и того же числа может кончаться на: 0, 0, 4, 8, 8, 0, 0, 4, 8, 8. Да, на 1 разность не может кончаться.
95 мин=1 7/12 ч 12 ч-1 7/12 ч=10 5/12 ч=125/12 ч (двигалась лодка) х - собственная скорость лодки х+2 - скорость по течению х-2 - скорость против течения 50/(х+2) - время движения по течению 50/(х-2) - время против течения 50/(х+2)+50/(х-2)=125/12 (умножим на 12(х+2)(х-2)) 600(х-2)+600(х+2)=125(х+2)(х-2) 600х-1200+600х+1200=125(х2-2х+2х-4) 1200х=125х2-500 125х2-1200х-500=0 (сократим на 25) 5х2-48х-20=0 D=48*48-4*5*(-20)=2304+400=2704 Корень из D=52 х"=(48-52):2*5=-4:10=-2/5 (не подходит по условию) х=(48+52):10=100:10=10 (км/ч) ответ: собственная скорость лодки 10 км/ч
2) x^2 - 3x + 1 < 0 - да, решением является отрезок без концов (x1;x2)
3) Расстояние от точки A(x; y) до начала координат равно √(x^2 + y^2)
√(7^2 + 1^2) = √(49 + 1) = √50; √(5^2 + 5^2) = √(25 + 25) = √50.
Да, расстояние одинаковое.
4) Да, верно. Если произведение отрицательно, то эти числа разного знака.
5) Да, это верно.
6) Не знаю.
7) Да, это верно. Сумма углов трех треугольников 3*180° = 540°
Сумма углов пятиугольника 5*180° - 2*180° = 3*180° = 540°
8) Нет, неверно. Диагонали - оси только у квадрата и ромба.
9) Площадь тр-ника S = 1/2*x*y*sin (x,y) = 1/2*2a*2b*sin (2a,2b) = a*b
Отсюда sin (2a,2b) = 1/2. Да, угол между сторонами 2a и 2b равен 30°.
10) Не знаю.
11) (3+5+11)/3 = 19/3 < 7 - нет, неверно.
12) 1 < 1*√2; 2 > 1*√2 - да, верно.
13) Среднее геометрическое чисел 3 и а
√(3a) < 5; 3a < 25; a < 25/3; a < 8 1/3 - нет, неверно. Числа [8; 8 1/3) тоже.
14) 0,1a + 0,3*3a = 0,1a + 0,9a = a = 0,25*4a - да, верно.
15) Да, верно. Четное число может кончаться на 2 или на 4.
142, 412, 152, 512, 172, 712, 452, 542, 472, 742, 572, 752,
124, 214, 154, 514, 174, 714, 254, 524, 274, 724, 574, 754.
16) Четные делители 1000: 2, 4, 8, 10, 20, 40, 50, 100, 200, 250, 500, 1000.
Да, их ровно 12.
17) Нет, такое число будет иметь сумму цифр 3, то есть делиться на 3.
18) Кубы могут кончаться на 0, 1, 8, 7, 4, 5, 6, 3, 2, 9.
Квадраты могут кончаться на 0, 1, 4, 9, 6, 5, 6, 9, 4, 1.
Разность куба и квадрата одного и того же числа может кончаться на:
0, 0, 4, 8, 8, 0, 0, 4, 8, 8. Да, на 1 разность не может кончаться.