41-32х≥0;
9-3х≥0
5+х≥0
ОДЗ: х ∈[-5; 41/32]
Перепишем уравнение в виде
√(41-32x)=2√(5+x)+√(9-3x)
Возводим в квадрат.
41-32х=4(5+х)+4√(5+х)·√(9-3х)+9-3х
4√(5+х)·√(9-3х)=12-33х
Возводим в квадрат при условии 12-33х≥0 ⇒ х ≤12/33.
16(5+х)(9-3х)=144-792х+1089х²;
1137х²-696х-576=0
379х²-232х-192=0
D=(-232)²-4·379·(-192)=53 824+291 072=344 896
x=(232-√344896)/758≈-0,47 или х=(232+√344896)/758≈1,08 - не удовлетворяет условию х ≤12/33, поэтому не является корнем уравнения
- интервал (0; 3) принадлежит этому множеству, и функция там непрерывна.
x=1 - единственная критическая точка на (0; 3).
+ - -
о----------|-----------o------>
0 1 3
Поскольку в окрестности х=1 производная меняет знак с "+" на "-", сама функция изменяет поведение с возрастания на убывание, т.е. х=1 - точка максимума.
Следовательно, в силу указанной выше теоремы функция принимает наибольшее значение на интервале (0; 3) именно при х=1. Это значение равно
у(1)= ln 1 - 1 = 0 - 1 = - 1.
ответ: 1.