ΔАВС , АВ=13 , АС=11 , ВС=20
Наименьший угол в треугольнике лежит против наименьшей стороны,
то есть ∠В - наименьший, сторона АС=11 - наименьшая.
ВМ ⊥ пл. АВС ⇒ ВМ ⊥ любой прямой , лежащей в пл. АВС, в том числе и высоте треугольника ВН, ВН ⊥ АС.
Тогда по теореме о трёх перпендикулярах МН⊥АС (ВН - проекция МН на пл. АВС) ⇒ МН=24.
Найдём ВН , используя две формулы нахождения площади ΔАВС.
S(ABC)=1/2*АС*ВН ⇒ ВН=2S/АС .
Полупериметр р=1/2*(11+13+20)=22 ,
S=√p*(p-a)(p-b)(p-c)=√(22*11*9*2)=66 .
ВН=2*66/11=12 .
ΔВМН: ∠МВН=90° , ВМ=√(МН²-ВН²)=√(24²-12²)=√432=12√3
1. Прежде всего, разобьем это выражение на множители:
n^4+2n^3+3n^2+2n=n*(n^3+2n^2+3*n+2)
Разделив столбиком многочлен n^3+2n^2+3*n+2 на (n+1), получаем (n^2+n+2). Т.е. исходный многочлен может быть представлен в следующем виде:
n^4+2n^3+3n^2+2n=n*(n+1)*(n^2+n+2)
2. Теперь рассмотрим 2 случая:
а). Пусть n - четное число, т.е. делится на 2 без остатка, тогда
n делится на 2 без остатка;
(n+1), будучи числом нечетным, не делится на 2 без остатка;
Теперь рассмотрим n^2+n+2:
n - четное, значит n^2 - тоже четное, и n^2+n - тоже четное, т.е. делится на 2 без остатка. Т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка => (n^2+n+2)/2=((n^2+n)/2) + 2/2=((n^2+n)/2)+1.
Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.
б). Пусть n - нечетное, т.е. не делится на 2 без остатка, тогда
n не делится на 2 без остатка;
(n+1), будучи числом четным, делится на 2 без остатка;
n - нечетное, значит n^2 - тоже нечетное, а n^2+n - уже четное, т.к. к нечетному n^2 прибавляем нечетное n. И аналогично, т.к. n^2+n уже делится на 2 без остатка, то n^2+n+2 также еще раз разделится на 2 без остатка.
Получаем, что исходное выражение можно три раза разделить на 2, т.е. разделить на 8.
ОХ: х=0, у=-3;.
ОУ:. у=0 1/2х-3=0
1/2х=3
х=3:1/2
х=6.
Відповідь: (0;-3); (6;0)