По определению модуля: |x+1|=x+1, при х+1≥0, т.е при x≥ - 1. Поэтому строим график g(x)=x²-3(x+1)+x на [-1;+∞), упрощаем: g(x)=x²-2x-3 на [-1;+∞). Строим часть параболы, ветви вверх, первая точка (-1;0) и далее вправо точки (0;-3) (1;-4)(2;-3)(3;0) (4;5)... Вершина в точке (1;-4)
|x+1|=-x-1 при х+1< 0, т.е при х < -1.
Поэтому строим график g(x)=x²-3(-x-1)+x на (-∞;-1), упрощаем: g(x)=x²+4x+3 на (-∞;-1). Строим часть параболы, ветви вверх, Вершина в точке (-2;-1) Парабола проходит через точки (-5; 8) (-4;3) (-3;0) (-2;-1) - вершина и направляется к точке (-1;0)
Графически мы имеем 2 прямоугольных треугольника с площадями по 150 каждый и гипотенузами по 25. площадь прямоуг. треуг-ка S=ab/2, а квадрат гипотенузы (25) равен сумме квадратов катетов (искомых сторон). тогда имеем систему уравнений: ab=300 =>b=300/a. Подставляем b в первое уравнение, имеем: a^2+90.000/a^2=625 => a^4+90.000=625a^2 => a^4-625a^2+90.000=0 Заменяем a^2 на х, получаем обычное квадратное уравнение x^2-625a+90.000=0 Дискриминант этого ур-я равен 30625, а его корень равен 175 (надеюсь, формулу дискриминанта, которая b^2-4ac, напоминать не надо?) корни ур-я ищем по формуле и получаем два корня уравнения, равные 225 и 400. Это, как мы помним, a^2, извлекая из каждого значения кв. корень получим два значения а: а1=15, а2=20. Подставляя их в формулу b=300/a получим значения.... b1=20, b2=15. Следовательно стороны прямоугольника имеют 15 и 20 см длины соответственно
S(n) = (x(1) + x(n))/2 * n
x(n) = x(1) + d(n - 1)
n = 33
x(17) = 28
S(n) = (x(1) + x(33))/2 * 33
x(1) + x(33) = x(1) + (x(1) + 32d) = 2*(x(1) + 16d) = 2*x(17)
S(n) = (x(1) + x(33))/2 * 33 = x(17)*33 = 28*33 = 924