1)
33*2^x-1 - 4^x+1 =2. Пусть 2^x =t, тогда 4^x = t^2. Перепишем наше уравнение в виде:
33t/2 - 4t^2=2.
8t^2-33t+4 =0. Считаем Дискриминант.Он равен 961
Тогда t1 = 33+31/8 = 8 t2 = 33-31/8 =1/4.
Учитывая замену 2^x = 8; x =3 и 2^x = 1/4 ; x=-2
ответ: 3 -2
2) x + 12√x -64 =0. Замена √x = t
t^2+12t-64=0. Дискриминант равен 400
t1 = -12 +20 /2 = 4 t2= -12-20/2 = -16.
Учитывая замену
√x = 4 x = 16 √x= -16 (нет корней)
ответ: 16
3) Составим уравнение 5(x+2.4) = 6.25(x-2.4)
5x+12 = 6.25x - 15.
1.25x = 27
x =21.6
ответ: 21,6 км/ч
1) x²-8x+20=0
D=(-8)²-4*20=16-80=-64<0 ⇒ нет действительных корней ⇒ нельзя разложить на множители квадр. трёхчлен
2)х²-1=(х-1)(х+1)
3)х²-8х+15=(х-3)(х-5) , так как
D=(-8)²-4*15=64-60=4>0 ⇒ есть два действ. корня
х₁=(8-2)/2=3 , х₂=(8+2)/2=5
4)х²-9х+20=(х-4)(х-5) , так как
D=(-9)²-4*20=81-80=1>0 ⇒ есть два действ. корня
х₁=4 , х₂=5
Примечание: если D=0, то есть два равных корня х₁=х₂
если D<0, то нет действ. корней, а есть комплексные корни
3х+х=8 х=2 Значит за единицу времени вторая наполнит 2 литра, а первая 6. Обозначим за t1 - часть времени, до перестановки и за t2 после.
2*t1=6*t2
t1=3t2
Мы условились, что время единица, поэтому t1+t2=1
t1=1-t2
3t2+t2=1
t2=1/4
t1=3/4
За единицу времени труба наливает два литра а за 3/4
2*3/4=1.5 литра
Это половина мелкого кувшина.
Весь кувшин 3 литра, а второй 5 литров.
Проверяем
2*3/4+6*1/4+2*1/4+6*3/4=
=6/4+6/4+1/2+9/2=3+5=8
ответ 3 и 5