3tg(2x+30)+1=0
3tg(2x+p/6)=-1
tg(2x+p/6)=-1/3
2x+p/6=-arctg 1/3+pk
2x=-arctg 1/3-p/6+pk
x=(-arctg 1/3)/2-p/12+pk/2; k принадлежит Z
Якщо число x є розв'язком як нерівності x>−4, так і нерівності х<5, тоді воно є розв'язком подвійної нерівності −4<x<5.
Множину усіх чисел, що задовільняють подвійній нерівності −4<x<5 називають числовим проміжком і позначають: (−4;5).
Зобразимо проміжок на малюнку. Точки малюємо виколотими, оскільки вони не належать проміжку.
51_t02(1).png
Розглянемо інші проміжки.
−4≤x≤5 або x∈[−4;5]. Читається: «Проміжок від −4 до 5, включаючи −4 та 5».
51_t02(4).png
−4≤x<5 або x∈[−4;5). Читається: «Проміжок від −4 до 5, включаючи −4».
51_t02(2).png
−4<x≤5 або x∈(−4;5]. Читається: «Проміжок від −4 до 5, включаючи 5».
51_t02(3).png
производная=-3^2+12x+15
приравниваем производную к нулю, находим критические точки
-3^2+12x+15=0
Д=144+180=18^2
x1=-12+18/-6=-1
x2=-12-18/-6=5
Разложим квадратный трехчлен(нашу производную) на линейные множители
-3(x+1)(x-5)
На числовой оси обозначим эти критические точки, которые разобьют ее на три интервала, в каждом из которых будем смотреть какие знаки принимает производная
-15
- + -
Если знак меняется с -на+, то имеем точку минимума, с + на - -максимума
ответ: Экстремумы Хmin=-1, Хmax=5.
корень из3 tg(2x+П/6)=-1
tg(2x+П/6)=-корень из 3/3
2x+П/6=-П/6+Пn
2x=-П/3+Пn
x=-П/6+Пn/2