При каких a неравенство (2a-3)cosx -5 >0 не имеет решения.а) { 2a -3 < 0 ;cosx < 5/(2a-3).⇔{ a < 1,5 ;cosx < 5/(2a-3) . не имеет решения , если 5/(2a-3) ≤ -1⇔5/(2a-3)+1 ≤ 0 ⇔(a+1)/(a-1,5) ≤ 0. a∈ [-1 ;1,5) .
б) 2a-3 =0 неравенство не имеет решения. a =1,5.
в) { 2a -3 > 0 ;cosx > 5/(2a-3)..⇔{ a > 1,5 ;cosx > 5/(2a-3) . не имеет решения , если 5/(2a-3) ≥1⇔5/(2a-3)-1 ≥ 0 ⇔(a-4)/(a-1,5) ≤ 0. a∈ (1,5 ; .4].
В задаче отсутствует вопрос. Исхожу из предположения, что требуется определить время движения. t = S/v = 400/v. Но скорость задана не конкретным значением, а границами. Значит время можно только оценить. 50<v<80 заменим обратными числами,при этом меняем знак неравенства. 1/50 > 1/v > 1/80. Запишем в привычном виде: 1/80 < 1/v < 1/50. Теперь умножим все части неравенства на 400. 400/80< 400/v< 400/50. 5< t<8. Значит при заданных условиях время движения от 5 до 8 часов.