1. Доказать тождество
sinα +sin5α+sin7α +sin11α = 4cos2α*cos3α*sin6α
sinα +sin5α+sin7α +sin11α =(sin5α +sinα) +(sin11α+sin7α) =
2sin3α*cos2α +2sin9α*cos2α =2cos2α*(sin9α+sin3α)=
2cos2α*2sin6α*cos3α =4cos2α*cos3α*sin6α
- - - - - - -
2.Найдите значение выражения sin2α*cos5α -sinα*cos6α ,если sinα = -1/√3
- - -
Cначала упростим выражение:
sin2α*cos5α -sinα*cos6α =2sinα*cos∝*cos5α - sinα*cos6α =
sinα(2cos5α*cos∝ - sinα*cos6α )=sinα*(cos6∝+cos4α -cos6α ) =
sinα*cos4α =sinα*(1 - 2sin²2α) = sinα*( 1 -2*(2sinα*cosα)² )=
= sinα*( 1 -8sin²α*cos²α ) =sinα*( 1 -8sin²α*(1 -sin²α) ) = || sinα =-1/√3 ||
= (-1/√3)*( 1 -8*(-1/√3)² *(1 - (-1/√3)² ) = - 1/√3 *( 1- (8/3)*(2/3) ) = 7√3 / 27
В решении.
Объяснение:
В квартире планируется создать две комнаты одинаковой ширины. Длина первой комнаты в 8 раз больше ширины, а длина второй комнаты - 4 метра. Если площадь квартиры 60 м², найдите ширину комнат.
х - ширина комнат.
8х - длина первой комнаты.
8х² - площадь первой комнаты.
4*х - площадь второй комнаты.
По условию задачи уравнение:
8х² + 4х = 60
8х² + 4х - 60 = 0, квадратное уравнение, ищем корни:
(прежде разделить уравнение на 8 для упрощения):
х² + 0,5х - 7,5 = 0
D=b²-4ac =0,25 + 30 = 30,25 √D=5,5
х₁=(-b-√D)/2a
х₁=(-0,5-5,5)/2 = -3, отбрасываем, как отрицательный.
х₂=(-b+√D)/2a
х₂=(-0,5+5,5)/2
х₂=5/2
х₂=2,5 (м) - ширина комнат.
Проверка:
2,5 * 8 = 20 (м) - длина первой комнаты.
20*2,5 = 50 (м²) - площадь первой комнаты.
4*2,5 = 10 (м²) - площадь второй комнаты.
50 + 10 = 60 (м²) - площадь квартиры, верно.