Задание № 2:
При каком значении параметра a уравнение |x^2−2x−3|=a имеет три корня?
введем функцию
y=|x^2−2x−3|
рассмотрим функцию без модуля
y=x^2−2x−3
y=(x−3)(х+1)
при х=3 и х=-1 - у=0
х вершины = 2/2=1
у вершины = 1-2-3=-4
после применения модуля график отражается в верхнюю полуплоскость
при а=0 - 2 корня (нули х=3 и х=-1)
при 0<а<4 - 4 корня (2 от исходной параболы, 2 от отображенной части)
при а=4 - 3 корня (2 от исходной параболы, 1 от вершины х=1)
при а>4 - 2 корня (от исходной параболы)
ответ: 4
То есть нужно найти число которое делилось на 2, на 3, на 4, на 5, на 6 с остатком 1. При этом сказано, что всего она могла вынимать max каждый раз по 7 яиц при этом остатков нет, отсюда следует найти число которое делится на 7 без остатков.
Отсюда следует, что нужно найти число которое делит на 2, 3, 4, 5, 6, но не на 7. не считая остатка.
Такое число 60, при этом дает остаток 4 при делении на 7 + остаток -> 5 яиц.
То есть 60 раз можно вынуть по 5 яиц с остатком 1, всего в корзине 60*5+1 = 301 штук.
301/7 = 43
301/6 = 50 (1)
301/ 5 = 60 (1)
301/4 = 75 (1)
301/ 3 = 100 (1)
301/2 = 150 (1)