Пусть двузначное число N имеет X десятков и Y единиц, т.е. N = 10X + Y По условию N в 3 раза больше произведения его цифр, т.е. 10X + Y = 3XY.
Если представить цифры этого числа в обратном порядке, получится число 10Y + X и отношение полученного числа к N равно 3,4, т.е. 10Y + X / 10X + Y = 3,4
Имеем систему:
10X + Y = 3XY 10Y + X / 10X + Y = 3,4 => 10Y + X = (10X + Y)3,4 10Y + X = 34X + 3,4Y 10Y - 3,4Y= 34X - X 6,6Y = 33X 6,6Y = 33X X = 0,2Y подставим Х в первое уравнение 10* 0,2Y + Y = 3Y*0,2Y 2Y + Y = 0,6Y^2 0,6Y^2 - 3Y = 0 Y( 0,6Y - 3) = 0 Y = 0 или 0,6Y - 3 =0 0,6Y = 3 Y = 5
если Y = 0 то Х =0 ( не подходит) если Y = 5 то Х = 0,2 * 5 = 1 => N = 15
1. |x²-7|+12=0
|x²-7|=-12
x∈∅
Данное уравнение не имеет корней, т.к. модуль является неотрицательным числом.
2. Выделим полный квадрат:
x²-6x+8 = (x²-2x*3+3²) -3²+ 8 = (x-3)² -9 + 8 = (x-3)² -1
Разложим на множители x²-6x+8 = (x-x₁)(x-x₂)
По теореме Виета находим корни: х₁*х₂=8 и х₁+х₂=-6 => х₁=2 и х₂=4
x²-6x+8= (x-2)(x-4)
3. 3x²-6x+c=0, x₁=x₂
По условию, квадратное уравнение имеет равные корни, следовательно, дискриминант этого уравнения равен нулю.
Находим с:
D= (-6)²-4*3*c = 36-12c
36-12c = 0
12c = 36
c = 3