* * * * * * * * * * * * * * * * * * *
ОПРЕДЕЛИ абсциссу вершины параболы, проходящей через точки c координатами (0;−5), (4;9), (−4;−2).
ответ: x₀ ≅ 1,3.
Объяснение: СЛУШАЮ !
y = f(x) =ax² +bx + c
-5 = a*0² +b*0 + c ⇒ c = - 5 ; y = f(x) =ax² +bx - 5
9 =a*4² +b*4 - 5 ; {16a +4b =14 ;
-2 = a*(-4)²+b(-4) -5. {16a -4b = 3 . || a =(3+4b)/16
16a +4b -(16a -4b) = 14 -3 ⇔8b =11 ⇒b =11/8 из 2-го уравнения
a = (3+4b)/16 = (3+4*11/8)/16 = (3+11/2)/16 = 17/32
у = (17/32)x² +(11/8)x - 5
Абсциссу вершины параболы будет :
x₀ = - b/2a = -(11/8) / 2(17/32) = -(11/8) / (17/16) = - (11*16)/(8*17) = -22/17 ≅1,3.
Первый этап. Составление математической модели.
Пусть х сторона данного квадрата, сторона нового квадрата будет равна 5х. Площадь первого квадрата будет
S₁=x² см²
Площадь нового квадрата будет
S₂=(5x)²=25x² см²
По условию площадь нового квадрата на 384 см².
Получаем уравнение: 25х²-х²=384
Второй этап. Работа с математической моделью
25х²-х²=384
24х²=384
х²=384/24
х²=16
х=+-4 - по условию подходит только х=4
Третий этап. Получение ответа на вопрос задачи.
х - сторона исходного квадрата, х=4 см, значит сторона квадрата 4 см.
ответ 4 см сторона квадрата