М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Dimoon122
Dimoon122
27.07.2021 08:31 •  Алгебра

Решите уравнение:
(х+1)²-(х-2)(х+2)=7
(25-х)²+25х>х²

👇
Ответ:
Maskimilian771
Maskimilian771
27.07.2021

Объяснение:

(x+1)²-(x-2)(x+2)=7

x²+2x+1-x²+4=7

2x=2

x=2/2=1

(25-x)²+25x>x²

25²-50x+x²+25x>x²

25x<25²

x<25

x∈(-∞; 25)

4,4(14 оценок)
Открыть все ответы
Ответ:
Составим и решим уравнение.
-7x - 4 * (0,7 - 2x) + 6 = 3 * (x - 0,8) + 2,6;
-7х - 2,8 + 8х + 6 = 3х - 2,4 + 2,6;
-7х + 8х - 3х = 2,6 - 2,4 + 2,8 - 6;
-2х = -3;
х = -3 / -2;
х = 3/2 = 1,5;
ответ: 1,5.
Для того, чтобы решить данное уравнение мы раскрыли скобки. При раскрытии скобок, множитель перед скобками умножается на каждый член в скобках. После этого, мы переносим известные слагаемые в право, а неизвестные влево. В полученном уравнении неизвестное число является множителем. Чтобы найти его значение мы произведение делим на известный множитель.
4,5(46 оценок)
Ответ:
дир2
дир2
27.07.2021

Условие

x ≥ –1, n – натуральное число. Докажите, что (1 + x)n ≥ 1 + nx.

Решение 1

Докажем неравенство индукцией по n.

База. При n = 1 неравенство превращается в равенство.

Шаг индукции. Пусть уже доказано, что (1 + x)n ≥ 1 + nx. Тогда (1 + x)n+1 ≥ (1 + nx)(1 + x) = 1 + nx + x + nx² ≥ 1 + (n + 1)x.

Решение 2

Пусть a > 1. Рассмотрим функцию f(x) = (1 + x)a – ax – 1, определенную при x > –1. Ее производная f'(x) = a(1 + x)a–1 – a = a((1 + x)a–1 – 1) положительна при x > 0 и отрицательна при –1 < x < 0. Следовательно, f(x) ≥ f(0) = 0 на всей области определения.

Замечания

1. Неравенство превращается в равенство не только при n = 1, но и при x = 0 . В остальных случаях оно строгое.

2. При x ≥ 0 (такое ограничение дано в источнике) неравенство Бернулли сразу следует из формулы бинома: (1 + x)n = 1 + nx + ... .

3. Из решения 2 видно, что неравенство верно и при нецелых n > 1.

4,8(40 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ