от минус бесконечности до минус трех(не включая минус три) и от пятнадцати до плюс бесконечности(не включая пятнадцать).
Объяснение:
Даж не знаю, что тут объяснять. Суть в том, что надо построить график и найти такие значения икс, при которых игрек будет меньше нуля. Можно воспользоваться онлайн ресурсами для построения графиков функций, если ответ надо найти быстро. Ручной решения заключается в том, что нужно приравнять функцию к нулю. Решив полученное квадратное уравнение, мы получим нули функции(то есть точки, в которых график пересекается с осью икс). Далее надо воспользоваться тем, что если а < 0 (в данном случае a = -1), то ветви параболы смотрят вниз, значит, функция будет принимать отрицательные значение "по краям" от нулей, то есть слева от левого нуля, и справа от правого нуля. А к центру от нулей она будет принимать положительное значение.
В приведенном случае функция должна быть меньше нуля. Нули функции у нас равняются минус трем и пятнадцати. Отсюда получаются и промежутки, указанные в ответе.
Надеюсь понятно объяснил!!
Очевидно , что многочлен меньшей степени не может делится на больший , тогда n>=k .
Таким образом можно записать :
n=m*k +t t-остаток от деления n на k ( t=0,1,2,3k-1) ( t<k)
Запишем :
x^n-1 = x^(m*k+t) -1 = x^(m*k) * x^t -1 = x^(m*k) *x^t -x^t +x^t -1 =
= x^t*( x^(m*k) -1 ) +(x^t -1)
Многочлен : x^t*( x^(m*k) -1 ) делится на x^(k) -1 поскольку если поделить на x^k-1 многочлен в скобках получаем геометрическую прогрессию :
(x^(m*k) -1 )/(x^(k) -1) = 1+x^k +x^2k ... +x^k*(m-1)
Пусть остаток t≠0
Тогда поскольку t < k , то x^t -1 не делится на x^k -1 .
А значит очевидно,что весь многочлен :
x^t*( x^(m*k) -1 ) +(x^t -1) не делится на x^k -1
Таким образом x^n-1 делится на x^k-1 , только когда остаток t=0.
Иначе говоря n должно делится на k