Предположим, что искомое число состоит из трех и более цифр, тогда мы получим следующее выражение (для трехзначного числа):
Это равенство не выполняется ни при каких значениях a, b, c. Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется. Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28. ответ: 2
Несколько теорем к решению данной задачи : 1. В равнобедренном тр-нике боковые стороны равны; 2. Высота в равнобедренном тр-ке делит основание пополам. 3) Теорема Пифагора. Дано: АВС - равноб.тр-ник АВ = ВС = 17см ВН (высота) = 8см Найти: АС Решение: ВН делит основание на отрезки АН и НС; АН=НС Рассмотрим треугольник АВН АВ -гипотенуза, ВН и АН - катеты. АВН -прямоугольный тр-ник По т. Пифагора определим АН АН = YAB^2 - BH^2 AH = Y 17^2 - 8^2 = Y 289 - 64 = Y225 = 15 AC = 2*15 = 30 ответ: АС = 30 см.
Это равенство не выполняется ни при каких значениях a, b, c.
Однозначным искомое число не может быть, поскольку после отбрасывания цифры ничего не останется.
Остается вариант - искомое число состоит из двух цифр. Получаем следующее выражение:
Нас устраивают таких однозначные значения a, при которых получаются однозначные значения b:
Таким образом, получаем всего два числа: 14 и 28.
ответ: 2