Представим 4, как 4 * 1 = 4(sin² x + cos²x), затем подставим, раскроем скобки и приведём подобные слагаемые:
8sin²x + sinx cos x + cos²x - 4(sin² x + cos²x) = 0 8sin²x + sinx cos x + cos²x - 4sin²x - 4cos²x = 0 4sin²x + sin x cos x - 3cos²x = 0 Данное уравнение является однородным уравнением второй степени. Для его решения разделим всё уравнение на cos²x. действительно, мы можем разделить на него, поскольку если бы cos²x был бы равен 0, то при подставновке его в уравнение получили бы: 4sin²x + 0 - 0 = 0 sin²x = 0 - но и синус и косинус не могут быть одновременно равны нулю по основному тригонометрическому тождеству. Получили противоречие, значит, мы имеем право разделить на это выражение. Получаем:
4tg²x + tg x - 3 = 0 Теперь пусть tg x = t, тогда
4t² + t - 3 = 0 D = 1 + 48 = 49 t1 = (-1 - 7) / 8 = -8/8 = -1 t2 = (-1+7) / 8 = 6/8 = 3/4 Приходим к совокупности уравнений: tg x = -1 или tg x = 3/4 x = -π/4 + πn, n∈Z x = arctg 3/4 + πk, k∈Z ответ: -π/4 + πn, n∈Z ; arctg 3/4 + πk, k∈Z
Поиск...
Избавься от ограничений
TOP_BANNER_BUTTON_NO_TRIAL
lenon
04.04.2012
Геометрия
5 - 9 классы
ответ дан
Средняя линия трапеции равна 8, площадь 24. Найдите высоту трапеции.
1
СМОТРЕТЬ ОТВЕТ
Войди чтобы добавить комментарий
ответ
3,4/5
9
GREENDEY
хорошист
1.4 тыс. ответов
1.8 млн пользователей, получивших
Площадь трапеции равна S = (а + b)/2 * h, где а и b - основания, а h -высота,
но с другойстороны средняя линия трапеции равна (а + b)/2 , поэтому
по данным задачи формула площади будет иметь вид:
24 = 8 * h
h = 3
ответ:высота трапеции равна 3.