Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид
( a + b ) n = ∑ k = 0 n ( n k ) a n − k b k = ( n 0 ) a n + ( n 1 ) a n − 1 b + ⋯ + ( n k ) a n − k b k + ⋯ + ( n n ) b n (a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n где ( n k ) = n ! k ! ( n − k ) ! = C n k {n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты, n n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
при а>0 ветви параболы идут вверх при а<0 ветви параболы идут вниз прежде всего найдем нули функции, то есть те х, при которых у=0
обращается в ноль для этого решаем уравнение ах²+bx+c=0 для начала находим дискриминант D=b²-4ac если D>0, у нас будут два пересечения с осью ОХ в точках х¹ и х² которые являются корнями квадратичной функции.
х¹'²=(-b±✓D)/2a
если D=0, то такая точка будет одна, причём ось ОХ будет касательной к параболе в этой точке.
если D<0, и а>0 то парабола будет над осью ОХ и все у>0 если D>0 и а<0, то парабола будет под осью ОХ и все у<0
теперь найдем те точки, при которых парабола пересекает ось ОУ
для этого подставляем х=0 в y(x)=ах²+bx+c, нетрудно увидеть, что при х=0, у=с
далее найдем производную у'
y'(x)=(ах²+bx+c)'=2аx+b y'(x*)=0 => x*= -b/(2a)
это координата вершины параболы затем посчитаем y*=y(x*), подставив х* в наше уравнение параболы у(х*)=а(х*)²+bx*+с
Так что основными точками , которые Вам надо найти будут точки пересечения параболы с осями ОХ, ОУ и вершина параболы. остальные точки - на Ваше усмотрение...
(
a
+
b
)
n
=
∑
k
=
0
n
(
n
k
)
a
n
−
k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n
−
1
b
+
⋯
+
(
n
k
)
a
n
−
k
b
k
+
⋯
+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n
−
k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.
В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.