1) х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
Объяснение:
1) ОДЗ: x^2-x-2>=0
При этом условии х>x^2-x-2
3>x^2-2x+1
3>(x-1)^2
1-sqrt(3) <x<1+sqrt(3)
Вернемся к ОДЗ
(x-0,5)^2>=1,5^2
x>=2 или x<=-1
Из пересечения областей решений и ОДЗ вытекает
х x<=-1 или 2=<x<1+sqrt(3)
х принадлежит (-бесконечность, 1] или [ 2,1+sqrt(3))
2) ОДЗ
x^2-3x+2 >=0
x^2-3x+2,25 >=0,5^2
x>=2 или x<=1
тогда
x^2-3x+2 >х+3
x^2-4x+4 >5
x>=2+sqrt(5) или х=<2-sqrt(5)
х принадлежит
(-бесконечность, 2-sqrt(5)) или (2+sqrt(5),+бесконечность)
Объяснение:
Задание 1.
1. (x-3)(x+4)<0
-∞__+__-4__-__3__+__+∞
x∈(-4;3).
ответ: В).
2. x²-2x-3≥0
x∈(-∞;-1]U[3;+∞).
Задание 2.
2x²-7x-4≤0
2x²-8x+x-4≤0
2x*(x-4)+(x-4)≤0
(x-4)*(2x+1)≤0
-∞__+__-0,5__-__4__+__+∞
x∈[-0,5;4].
ответ: x=0; x=1; x=2; x=3; x=4.
Задание 3.
{2x²-7x-4≤0 {(x-4)(2x+1)≤0 {x∈[-0,5;4]
{5x-2<x-1 {4x<1 |÷4 x<0,25 {x∈(-∞;0,25) ⇒
ответ: x∈[-0,5;0,25).
Задание 4.
ОДЗ: x+4≠0 x≠-4.
-∞__+__-4__-__3__+__+∞
x∈(-4;3].
ответ: x∈(-4;3].