3. Функция задана уравнением у=- 2x2 + 16x - 14 а) В какой точке график данной функции пересекает ось OY? b) Найдите точки пересечения графика функции с осью ОХ. c) Запишите уравнение оси симметрии графика данной функции. d) Постройте график функции.
Если ветви параболы направлены вниз, то квадратичная функция у=ах²+bx+c в вершине параболы принимает наибольшее значение и коэффициент при х² меньше 0, то есть а<0.
Метод подстановки. если есть система, например, х + y = 10 xy = 1. то можно выразить х или у. из первого уравнения x = 10 - y, выразили х, при этом у перенесли с обратным знаком направо. теперь вместо х во втором уравнении подставляем его выражение: xy = 1 => (10 - y)y = 1, -1 + 10y + y^2 = 0. не удачное, но квадратное уравнение. принцип: выразить одно через другое, и это одно везде заменить его выражением. сложение. например, дана система, ax + by = a cx - dy = b. здесь буквы, кроме х и у, это просто некоторые числа, абстрактно. и если вот таким образом: ax+cx + by - dy = a + b (к первому уравнению прибавили второе) cx - dy = b, (второе остаётся без изменения) из первого уравнения сразу выражается какая-нибудь переменная как число, то потом во второе подставляется вместо этой переменной число. возможно, таких сложений надо будет сделать несколько. возможно, будет лучше ко второму прибавлять первое, тогда без изменений останется первое.
Если ветви параболы направлены вниз, то квадратичная функция у=ах²+bx+c в вершине параболы принимает наибольшее значение и коэффициент при х² меньше 0, то есть а<0.
Координаты вершины х(верш)= -b/2a
y(верш)=ах²(верш)+bx(верш)+с=a(-b/2a)²+b(-b/2a)+c
x(верш)=-(а-3)/2а
а(а-3)² (а-3)² (а-3)² (а-3)²
у(верш)= - +1=4 , - - 3=0 ,
4а² 2а 4а 2а
а²-6а+9-2(а²-6а+9)-12а
=0
4а
-а²+6а-9-12а=0
-а²-6а-9=0 , а²+6а+9=0 , (а+3)²=0 , а=-3