1. 3х - 3
2. -11
3. 7х - 1
4. -20
5. 5
6. 2х - 9
7. 2
8. 7х - 10
9. -19
10. 7х - 5
Объяснение:
1. 3(х+4) - (3-х) - х - 4 = 3х + 4 - 3 + х - х - 4 = 3х - 3
2. x + 4 - 5(2-х) - (5+1)х - 5 = х + 4 - 10 + 5х - 5х - х - 5 = 4 - 10 - 5 = -11
3. 4(x+4) - 4(3-х) - x - 5 = 4х + 16 - 12 + 4х - х - 5 = 4х + 4х - х + 16 - 12 - 5 = 7х - 1
4. x + 2 - 4(5-х) - (4+1)х - 2 = х + 2 - 20 + 4х - 4х - х - 2 = -20
5. 2(x+4) - (1-x) - (1+2)х - 2 = 2х + 8 - 1 + х - х - 2х - 2 = 8 - 1 - 2 = 5
6. x + 2 - 2(5-х) - x - 1 = х + 2 - 10 + 2х - х - 1 = 2 - 10 - 1 + 2х = -9 + 2х = 2х - 9
7. 4(x+2) - (1-x) - (1+4)х - 5 = 4х + 8 - 1 + х - х - 4х - 5 = 8 - 1 - 5 = 2
8. 4(х+2) - 4(4-x) - x - 2 = 4х + 8 - 16 + 4х - х - 2 = 4х + 4х - х + 8 - 16 - 2 = 7х - 10
9. 3(х+1) - 4(5-х) - (4+3)х - 2 = 3х + 3 - 20 + 4х - 4х - 3х - 2 = 3 - 20 - 2 = -19
10. 3(x+3) - 5(2-х) - x - 4 = 3х + 9 - 10 + 5х - х - 4 = 3х + 5х - х + 9 - 10 - 4 = 7х - 5
1)Решение системы уравнений (-1; 10);
2)Решение системы уравнений (4; -1)
Объяснение:
Решите систему уравнений методом сложения:
1)y-6x=16
4y+6x=34
Смысл метода алгебраического сложения в том, чтобы при сложении уравнений одно неизвестное взаимно уничтожилось. То есть, чтобы коэффициенты при неизвестном каком-то были одинаковыми, но с противоположными знаками. Для того, чтобы этого добиться, преобразовывают уравнения, можно умножать обе части уравнения на одно и то же число, делить.
В данной системе ничего преобразовывать не нужно, коэффициенты при х одного значения и с противоположными знаками:
Складываем уравнения:
у+4у-6х+6х=16+34
5у=50
у=10
Теперь подставляем значение у в любое из двух уравнений системы и вычисляем х:
y-6x=16
-6х=16-у
-6х=16-10
-6х=6
х=6/-6
х= -1
Решение системы уравнений (-1; 10)
2)3x-4y=16
5x+6y=14
В данной системе, чтобы применить метод сложения, нужно первое уравнение умножить на 3, второе на 2:
9х-12у=48
10х+12у=28
Складываем уравнения:
9х+10х-12у+12у=48+28
19х=76
х=76/19
х=4
Теперь подставляем значение х в любое из двух уравнений системы и вычисляем у:
3x-4y=16
-4у=16-3*4
-4у=16-12
-4у=4
у=4/-4
у= -1
Решение системы уравнений (4; -1)