Решите все
1. Найдите значение выражения 2х2 – 0,5у + 6 при х = 4, у = –2.
Представьте в виде многочлена (2–4).
2. 5а2 (4а3 – а2 + 1).
3. (3с – х) (2с – 5х).
4. (3а + 2b)2.
Упростите выражение (5–6).
5. 5х (2х + 3) – (х – 1) (х – 6).
6. (а – с)2 – с (а – 3с).
7. Представьте в виде квадрата двучлена выражение 4а2 – 20ах + 25х2.
8. Докажите, что если х – у – z = 0, то х (уz + 1) – y (xz + 1) – z (xy + 1) =
= –xyz.
9. Выполните возведение в квадрат: (3а2 + 1 – а)2.
10*. Найдите значение выражения а2 + b2, если а – b = 6, ab = 10.
Подкоренное выражение 7х - х² должно быть положительным или равным нулю, потому что извлекать квадратный корень из отрицательного числа нельзя.
7х - х² ≥ 0.
Решим неравенство методом интервалов. Найдем нули функции.
7х - х² = 0.
Вынесем за скобку общий множитель х.
х(7 - х) = 0.
Произведение двух множителей равно нулю тогда, когда один из множителей равен нулю.
1) х = 0;
2) 7 - х = 0;
х = 7.
Отметим на числовой прямой точки 0 и 7.
Эти числа делят числовую прямую на интервалы 1) (-∞; 0], 2) [0; 7], 3) [7; +∞).
Выясним, на каком из интервалов выражение 7х - х² будет принимать положительные значения. На 1 и 3 интервалах это выражение отрицательно, на 2 итервале - положительно. Поэтому, значения х, принадлежащие 2 интервалу являются областью определения функции.
ответ. [0; 7].