М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Kate1892
Kate1892
24.12.2021 13:46 •  Алгебра

очень надо (если ответ будет правильний могу денег скинуть) только ответе


очень надо (если ответ будет правильний могу денег скинуть) только ответе
очень надо (если ответ будет правильний могу денег скинуть) только ответе

👇
Открыть все ответы
Ответ:
Tolapula
Tolapula
24.12.2021

В Китае, как ты знаешь, и сам император и все его подданные — китайцы. Дело было давно, но потому-то и стоит о нём послушать, пока оно не забудется совсем! В целом мире не нашлось бы дворца лучше императорского; он весь был из драгоценного фарфора, зато такой хрупкий, что страшно было до него дотронуться. В саду росли чудеснейшие цветы; к самым лучшим из них были привязаны серебряные колокольчики; звон их должен был обращать на цветы внимание каждого прохожего. Вот как тонко было придумано! Сад тянулся далеко-далеко, так далеко, что и сам садовник не знал, где он кончается. Из сада можно было попасть прямо в густой лес; в чаще его таились глубокие озёра, и доходил он до самого синего моря. Корабли проплывали под нависшими над водой вершинами деревьев, и в ветвях их жил соловей, который пел так чудесно, что его заслушивался, забывая о своём неводе, даже бедный, удручённый заботами рыбак. «Господи, как хорошо!» — вырывалось наконец у рыбака, но потом бедняк опять принимался за своё дело и забывал о соловье, на следующую ночь снова заслушивался его и снова повторял то же самое: «Господи, как хорошо!»не

4,5(49 оценок)
Ответ:
Кирилл6901
Кирилл6901
24.12.2021

На этой странице я расскажу об одном популярном классе задач, которые встречаются в любых учебниках и методичках по теории вероятностей - задачах про бросание монет (кстати, они встречаются в части В6 ЕГЭ). Формулировки могут быть разные, например "Симметричную монету бросают дважды..." или "Бросают 3 монеты ...", но принцип решения от этого не меняется, вот увидите.

найти вероятность, что при бросании монеты

Кстати, сразу упомяну, что в контексте подобных задач не существенно, написать "бросают 3 монеты" или "бросают монету 3 раза", результат (в смысле вычисления вероятности) будет один и тот же (так как результаты бросков независимы друг от друга).

Для задач о подбрасывании монеты существуют два основных метода решения, один - по формуле классической вероятности (фактически переборный метод, доступный даже школьникам), а также его более сложный вариант с использованием комбинаторики, второй - по формуле Бернулли (на мой взгляд он даже легче первого, нужно только запомнить формулу). Рекомендую по порядку прочитать про оба метода, и потом выбирать при решении подходящий.

Объяснение:

4,8(22 оценок)
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ