Будем рассуждать так: раз нужно чётное число, то последняя (третья) цифра- это 0, 2, или 4 то есть для третьей цифры есть эти три варианта раз нужно трёхзначное, то первая цифра не может быть равна нулю значит, ноль может быть использован только в третьей или второй цифре 1) если третья цифра- ноль, то для второй остаётся четыре варианта: 1, 2, 3, 4, а для первой- три варианта (исключая цифру, поставленную второй) 2) если третья цифра- 2, то для второй остаётся четыре варианта: 0, 1, 3, 4 а для первой- три варианта (если вторая цифра- это ноль) и два варианта (если вторая цифра не ноль, а 1, 3 или 4) 3) если третья цифра- 4, то получится то же, что и в варианте 2)
считаем количество комбинаций: для 1) это: 1 * 4 * 3 = 12 разных чисел а для двух вариантов 2) и 3) вместе это: 1*(1*3 + 3*2) * 2 варианта = 18 разных чисел Итого, можно составить: 12 + 18 = 30 разных трёхзначных чисел
Можно начать считать варианты наоборот, начиная с первой цифры трёхзначного числа: итак нам даны 3 чётных и 2 нечётных цифры: 0, 2, 4 и 1, 3 из них, для первой цифры можно использовать 2 чётных и 2 нечётных (т.к. ноль исключаем), а для третьей цифры можно использовать только чётные. 1) если ставим 1ую цифру чётную, то для 2ой цифры остаются 2 чётных и 2 нечётных 1а) если ставим 2ую цифру чётную, то для 3ей остаётся только 1 чётная цифра 1б) если ставим 2ую цифру нечётную, то для 3ей остаются 2 чётных варианта цифр 2) если ставим 1ую цифру нечётную, то для 2ой цифры остаются 3 чётных и 1 нечётная 2а) если ставим 2ую цифру чётную, то для 3ей остаются 2 чётных варианта цифр 2б) если ставим 2ую цифру нечётную, то для 3ей остаются 3 чётных варианта цифр
Считаем варианты, начиная с первой цифры: 2 чётных варианта первой цифры, каждый даёт по 2 чётных и 2 нечётных варианта второй цифры, из которых первые два- каждый даёт по 1 варианту 3ей цифры, а вторые два- каждый даёт по 2 варианта для 3ей цифры. То есть получаем: 2 * ( 2*2 + 2*1 ) = 12 вариантов, если первая цифра- чётная.
Так же считаем для нечётной первой цифры: 2 нечётных варианта первой цифры, каждый даёт по 3 чётных и 1 нечётному варианту второй цифры, из которых первые три- каждый даёт по 2 варианта для 3ей цифры, а оставшийся один- даёт 3 варианта для 3ей цифры. То есть получаем: 2 * ( 3*2 + 1*3 ) = 18 вариантов, если первая цифра- чётная.
Итого, можно составить: 12 + 18 = 30 разных трёхзначных чисел
Объяснение:
x - количество деталей в 1-й коробке.
y - количество деталей во 2-й коробке.
Система неравенств:
x+y>27; x>27-y
x>2(y-12); x>2y-24
9(x-10)<y; y>9x-90; 9x<y+90; -x>-y/9 -10
x-x>2y-24 -y/9 -10
(18y-y)/9 -34<0
17y<34·9
y<2·9; y<18
При y=17: x>27-17; x>10.
Допустим x=11; y=17:
11+17>27; 28>27
11>2(17-12); 11>10
9(11-10)<17; 9<17
Неравенства выполняются, следовательно, 11 деталей - в 1-й коробке, 17 деталей - во 2-й коробке.
Чтобы сомнений не было, проверим со следующими данными:
x=12; y=16
12+16>27; 28>27
12>2(16-12); 12>8
9(12-10)<16; 18>16 - неравенство не выполняется.
ответ: 11 и 17.