М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
evgeniiantonov
evgeniiantonov
27.04.2022 20:09 •  Алгебра

Решить : найдите общее решение и частное, удовлетворяющее начальным условиям решение дифференциального уравнения первого порядка: 1) y^,=y^3*x, у = 1 при х = 1; 2) *y)/x=x^3*e^x, y0=e, x0=1

👇
Ответ:
tatsawi
tatsawi
27.04.2022

1) y' = y³x

 \frac{dy}{dx} = \frac{y^3}{x}

Проинтегрируем обе части:

 \frac{dy}{y^3}=xdx

-\frac{1}{2y^2}=\frac{x^2}{2}+C - общее решение дифф. уравнения.

Из начального условия y(1)=1 найдем частное решение:

Подставив в общее решение, найдем С

-1/2 = 1/2 + С ⇔ С = -1/4

y = \frac{4}{1-2x^2} - частное решение дифф. уравнения.

 

2) y' - \frac{3y}{x}=x^3e^x

Для начала найдем общее решение однородного дифф. уравнения

y' - \frac{3y}{x}=0

\frac{dy}{dx} = \frac{3y}{x}

\frac{dy}{y}=\frac{3dx}{x}

Проинтегрировав, получим:

ln|y|=3ln|x| + lnC

y = Cx³ - общее решение однородного дифф. уравнения

y = C(x)x³ подставим в наше дифф. уравнение

C'(x)x^3 + 3x^2C(x) - 3C(x)x^2 = x^3e^x

C'(x)=e^x

C(x) = \int{e^x}\, dx = e^x + C_1

y = (e^x + C_1)x^3 - общее решение дифф. уравнения

Из начального условия y(1) = e найдем C₁

C₁ = 0

y = e^xx^3 - частное решение дифф. уравнения

4,4(54 оценок)
Открыть все ответы
Ответ:
МарысяДэн
МарысяДэн
27.04.2022
1) путь сначала было х соли и у воды
x/(x+y)=0,35
x+y -масса раствора
когда добавили соль, стало
(x+110)/(x+110+y)=0,6
решаем эту систему
x=0,35(x+y)
x+110=0,6(x+y+110)

x=0,35x+0,35y
0,65x=0,35y
y=0,65x/0,35=13x/7
 
x+110=0,6(x+13x/7+110)
x+110=0,6(20x/7+110)
x+110=12x/7+66
12x/7-x=110-66
4x/7=44
x=44*7/4=77
y=77 *13/7=11*13=143
x+y=77+143=220
ответ: первоначальная масса раствора 220г
в растворе первоначально было соли 77г

2) в певой бочке было х литров, а во второй у
x+y=798
x-15=y-57
решаем эту систему
y=798-x
x=y-42
x=798-x-42
2x=756
x=378
y=798-378=420

ответ: в первой бочке было первоначально 378л бензина;
во второй бочке было первоначально 420л бензина.
4,8(54 оценок)
Ответ:
zaqwsxcde
zaqwsxcde
27.04.2022

вспомним что такое модуль

|x| = x  x>=0

    = -x  x<0

Пишем на всякий случай ОДЗ x≠3 и смотрим подмодульное выражение

(x²+x-2)/(x-3) = (x+2)(x-1)/(x-3)

D=1+8 = 9

x12=(-1+-3)/2 = -2 1

смотрим метод интервалов

[-2] [1] (3)

Итак при

1. x∈[-2 1) U (3 + ∞)

|(x²+x-2)/(x-3)| = (x²+x-2)/(x-3)

2. x∈(-∞-2) U [1  3)

|(x²+x-2)/(x-3)| = - (x²+x-2)/(x-3)

решаем полученные уравнения

1. x∈[-2 1] U (3 + ∞)

(x²+x-2)/(x-3) = (x²+x-2)/(x-3) решения все числа на интервалах с учетом одз

x∈[-2 1) U (3 + ∞)

2. x∈(-∞-2) U (1  3)

(x²+x-2)/(x-3) = - (x²+x-2)/(x-3)

2(x²+x-2)/(x-3) = 0

x=1  x=-2 решений нет

ответ x∈[-2 1] U (3 + ∞)

4,7(46 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ