Если одночлены состоят из одинаковых переменных в одинаковых степенях, то они являютсяподобными. Коэффициенты одночленов при этом могут различаться. Примеры подобных одночленов:
3a2 и –4a2; 31 и 45; a2bx4 и 1,4a2bx4; 100y3и 100y3
Но одночлены –6ab2 и 6ab не являются подобными, так как у них переменная b находится в разных степенях.
Подобные одночлены обладают удивительным свойством — их можно легко складывать и вычитать. Если нужно найти сумму двух или более подобных одночленов, то их коэффициенты надо сложить, а переменные в сумме оставить без изменений. Если же требуется найти разность двух подобных одночленов, то коэффициент одного одночлена надо вычесть из второго, а переменные оставить без изменений. Примеры:
4x2 + 15x2 = 19x2
5ab – 1,7ab = 3,3ab
13a10b5c3 – 13a10b5c3 = 0a10b5c3 = 0
Эти действия называются приведением подобных одночленов.
Почему же подобные одночлены можно так складывать и вычитать? Попробуем упростить выражения, не используя правила приведения подобных одночленов:
2x + 4x = (x + x) + (x + x + x + x) = x + x + x + x + x + x = 6 * x = 6x
2x – 4x = (x + x) – (x + x + x + x) = x + x – x – x – x – x = – x – x = – (x + x) = –(2x) = –2x
То есть свойство подобных членов вытекает из правила арифметики о том, что произведение двух чисел является ничем иным как суммой из слагаемых одного числа, где количество слагаемых равно другому числу:
2 * 3 = 3 + 3 = 2 + 2 + 2
№2 а)|а| ∈ {17,8; 0; 9/11; 21,(4); 9/11}
б) |а| ∈ {2,93; 3; 15/4; 7 2/3; 8}
№3 а) |x|=18.1 раскрывая модуль
б) -|x|=-2 2/7
|x|=2 2/7
раскрывая модуль
в) 7-|x|=17
|x|=7-17
|x|=-10
решений нет
г) |x-0.9|=0.9
раскрывая модуль
х-0.9=0.9 либо х-0.9=-0.9
х=0.9+0.9 либо х=-0.9+0.9
д) |x|=0 раскрывая модуль
х=0
№4
а| ∈ { 1,3; 4; 0,(3); 1 1/9; 3/5} и а < 0, то а ∈ { -1,3; -4;- 0,(3); -1 1/9; -3/5}