1) Раскрыть скобки: x^4-10x^3+35x^2-50x+24=0 2) Рассмотреть все числа на которые может делиться число 24. Это: 1,2,3,4,6,8,12,24 После проверки каждого числа подходит только 1. 1^4−10×1^3+35×1^2−50×1+24=0 60-60=0 3) Далее необходимо поделить уравнение x^4-10x^3+35x^2-50x+24=0 на (x-1) => (x^3−9x^2+26x−24)(x−1)=0 4) Повторяем шаги 2 и 3 относительно этого уравнения: x^3−9x^2+26x−24=0 В данном случае ответ будет (х-2) 5)В итоге имеем (x^2−7x+12)(x−2)(x−1)=0 6) Дальше я уже думаю Вы сами знаете как решать. 7) ответ: (x−4)(x−3)(x−2)(x−1)=0 х=1,2,3,4.
5
Объяснение:
Пусть на дом задано n задач, тогда всего комбинаций решенных задач 2
n
(каждую из
задач ученик может решить или не решить). Вычтем из этих комбинаций комбинации,
когда решено менее 3 задач: 1 комбинация, когда ничего не решено; n комбинаций,
когда решена 1 задача; n(n−1)
2
, когда решено две задачи (первую решенную можно
выбрать , вторую (n − 1), при этом нам не важен порядок, поэтому делим
на 2. Итого получаем, что уникальных комбинаций, за которые учитель не поставит
оценку «2»: 2
n−1−n−
n(n−1)
2
. Для того, чтобы кто-нибудь обязательно получил оценку
«2», это число должно быть меньше, чем число учеников в классе (чтобы у каких-то
двух комбинация задач совпадала). Получаем неравенство: 2
n − 1 − n −
n(n−1)
2 < 30
наибольшее n, удовлетворяющее этому неравенству это n = 5.
ответ: 5 задач