Пусть х км/ч - собственная скорость катера. Течение реки катеру, увеличивая его скорость, если бы катер плыл ПО течению! Тогда бы к скорости катера нужно было бы добавить скорость течения реки 2 км/ч! И наоборот, течение реки мешает катеру, если он плывет ПРОТИВ течения! Это значит, что скорость реки 2 км/ч нужно вычесть из скорости катера. По условию катер плывет ПРОТИВ течения реки, значит его скорость равна (х-2) км/ч! Катер плыл 3 часа против течения, значит, по формуле расстояния S=v*t имеем: скорость (х-2) нужно умножить на время 3 часа, получим: 3*(х-2) км - проплыл катер всего по реке. Далее, озеро не имеет течения, следовательно, катеру ничего не мешало, но и не двигаться, берем только собственную скорость катера х км/ч и по той же формуле умножаем на время, которое катер плыл по озеру, т.е. на 1 час, имеем расстояние, которое катер проплыл по озеру: х*1 км - проплыл катер всего по озеру По условию сказано, что ВСЕГО катер проплыл 72 км. Следовательно, нужно сложить расстояния, пройденные катером по реке 3*(х-2) и по озеру 1*х и приравнять к известному расстоянию 72 км. В результате имеем уравнение: 3*(х-2)+х=72 Раскрываем скобки и приводим подобные: 3*х-6+х=72 4*х-6=72 4*х=72+6 4*х=78 х=78/4 х=19,5 Так как мы изначально приняли за х собственную скорость катера, то его значение и есть ответ задачи. ответ: собственная скорость катера равна 19,5 км/ч.
С3, неплохо log(6-x, (x-6)^2/(x-2)) >= 2 ОДЗ: (x-6)^2/(x-2) >0 => (2;6) U (6;+oo) 6-х =\= 1 => x=\=5 6-x>0 => (-oo;6) общий промежуток: (2;5) U (5;6) Пользуемся правилом разности логарифмов log(6-x, (x-6)^2) - log(6-x, x-2) >=2 2log(6-x, |x-6|)-log(6-x, x-2)>=2 -log(6-x, x-2)>=0 log(6-x, x-2)<=0 1. 6-x C (0;1) 6-x>0 => 6<x 6-x<1 => x>5 общий промежуток (5;6) меняем знак неравенства x-2>=1 x>=3 общее решение (5;6) 2. 6-x C (1;+oo) 6-x>1 => x<5 x-2<=1 x<=3 общее решение (-oo;3] С учетом ОДЗ (2;3] U (5;6)
(x^2-x-14)/(x-4) + (x^2-8x+3)/(x-8) <= 2x+3 Здесь можно не побрезговать и тупо привести к общему знаменателю (x^2-x-14)(x-8)+(x^2-8x+3)(x-4)-(2x-3)(x-4)(x-8) / (x-4)(x-8) <=0 После всех подсчетов остается (x+4)/((x-4)(x-8))<=0 методом интервалов x<=-4; x C (4;8)
Течение реки катеру, увеличивая его скорость, если бы катер плыл ПО течению! Тогда бы к скорости катера нужно было бы добавить скорость течения реки 2 км/ч!
И наоборот, течение реки мешает катеру, если он плывет ПРОТИВ течения! Это значит, что скорость реки 2 км/ч нужно вычесть из скорости катера.
По условию катер плывет ПРОТИВ течения реки, значит его скорость равна (х-2) км/ч!
Катер плыл 3 часа против течения, значит, по формуле расстояния
S=v*t
имеем: скорость (х-2) нужно умножить на время 3 часа, получим:
3*(х-2) км - проплыл катер всего по реке.
Далее, озеро не имеет течения, следовательно, катеру ничего не мешало, но и не двигаться, берем только собственную скорость катера х км/ч и по той же формуле умножаем на время, которое катер плыл по озеру, т.е. на 1 час, имеем расстояние, которое катер проплыл по озеру:
х*1 км - проплыл катер всего по озеру
По условию сказано, что ВСЕГО катер проплыл 72 км. Следовательно, нужно сложить расстояния, пройденные катером по реке 3*(х-2) и по озеру 1*х и приравнять к известному расстоянию 72 км.
В результате имеем уравнение:
3*(х-2)+х=72
Раскрываем скобки и приводим подобные:
3*х-6+х=72
4*х-6=72
4*х=72+6
4*х=78
х=78/4
х=19,5
Так как мы изначально приняли за х собственную скорость катера, то его значение и есть ответ задачи.
ответ: собственная скорость катера равна 19,5 км/ч.