М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
verbenalaym
verbenalaym
20.01.2021 00:43 •  Алгебра

20. Решите уравнение х³ – 5х2 - 8х + 40 = 0.

👇
Ответ:
AbilfaizK
AbilfaizK
20.01.2021

потом

х³=5

Объяснение:

надеюсь удачи ♡


20. Решите уравнение х³ – 5х2 - 8х + 40 = 0. ​
4,7(34 оценок)
Открыть все ответы
Ответ:
Периодичность тригонометрических функций. Полупериодичность синуса и косинуса      Рассмотрим рисунок 5.Рис.5      Если луч OM1, изображенный на рисунке 5, повернуть по ходу или против хода часов на полныйугол (360 градусов или 2π  радиан), то он совместится с самим собой. Следовательно, справедливы формулы:sin (α° + 360°) = sin α°,   cos (α° + 360°) = cos α°,sin (α° – 360°) = sin α°,   cos (α° – 360°) = cos α°,а также формулы:sin (α + 2π) = sin α ,   cos (α + 2π) = cos α ,sin (α – 2π) = sin α,   cos (α – 2π) = cos α.      Поворачивая луч  OM1 на полный угол по ходу или против хода часов n раз ( 360n градусов или2nπ  радиан), получаем следующие формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами синуса и косинусаявляются углы   360° n, .      В случае, когда углы измеряются в радианах, периодами синуса и косинуса являются числа   2nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом синуса и косинуса является угол 360°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом синуса и косинуса является число 2π .      Теперь рассмотрим рисунок 6.Рис.6      Если луч  OM1, изображенный на рисунке 6, повернуть по ходу или против хода часов на развернутый угол (180 градусов или π радиан), то он совместится с лучом    OM2 . Следовательно, справедливы формулы:sin (α° + 180°) = – sin α°,   cos (α° + 180°) = – cos α°,sin (α° – 180°) = – sin α°,   cos (α° – 180°) = – cos α°,а также формулы:sin (α + π) = – sin α ,   cos (α + π) = – cos α ,sin (α – π) = – sin α,   cos (α – π) = – cos α.      Полученные формулы описывают свойство полупериодичности синуса и косинуса.      Таким образом, в случае, когда углы измеряются в градусах, угол 180° является полупериодом синуса и косинуса.      В случае, когда углы измеряются в радианах, полупериодом синуса и косинуса является число π.      Следствие. Посколькуто справедливы формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами тангенса и котангенсаявляются углы  180° n,       В случае, когда углы измеряются в радианах, периодами тангенса и котангенса являются числа   nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом тангенса и котангенса является угол  180°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом тангенса и котангенса являются число π.
4,8(80 оценок)
Ответ:
Arina17122002
Arina17122002
20.01.2021
Периодичность тригонометрических функций. Полупериодичность синуса и косинуса      Рассмотрим рисунок 5.Рис.5      Если луч OM1, изображенный на рисунке 5, повернуть по ходу или против хода часов на полныйугол (360 градусов или 2π  радиан), то он совместится с самим собой. Следовательно, справедливы формулы:sin (α° + 360°) = sin α°,   cos (α° + 360°) = cos α°,sin (α° – 360°) = sin α°,   cos (α° – 360°) = cos α°,а также формулы:sin (α + 2π) = sin α ,   cos (α + 2π) = cos α ,sin (α – 2π) = sin α,   cos (α – 2π) = cos α.      Поворачивая луч  OM1 на полный угол по ходу или против хода часов n раз ( 360n градусов или2nπ  радиан), получаем следующие формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами синуса и косинусаявляются углы   360° n, .      В случае, когда углы измеряются в радианах, периодами синуса и косинуса являются числа   2nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом синуса и косинуса является угол 360°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом синуса и косинуса является число 2π .      Теперь рассмотрим рисунок 6.Рис.6      Если луч  OM1, изображенный на рисунке 6, повернуть по ходу или против хода часов на развернутый угол (180 градусов или π радиан), то он совместится с лучом    OM2 . Следовательно, справедливы формулы:sin (α° + 180°) = – sin α°,   cos (α° + 180°) = – cos α°,sin (α° – 180°) = – sin α°,   cos (α° – 180°) = – cos α°,а также формулы:sin (α + π) = – sin α ,   cos (α + π) = – cos α ,sin (α – π) = – sin α,   cos (α – π) = – cos α.      Полученные формулы описывают свойство полупериодичности синуса и косинуса.      Таким образом, в случае, когда углы измеряются в градусах, угол 180° является полупериодом синуса и косинуса.      В случае, когда углы измеряются в радианах, полупериодом синуса и косинуса является число π.      Следствие. Посколькуто справедливы формулы:      Таким образом, в случае, когда углы измеряются в градусах, периодами тангенса и котангенсаявляются углы  180° n,       В случае, когда углы измеряются в радианах, периодами тангенса и котангенса являются числа   nπ, .      В случае, когда углы измеряются в градусах, наименьшим положительным периодом тангенса и котангенса является угол  180°.      В случае, когда углы измеряются в радианах, наименьшим положительным периодом тангенса и котангенса являются число π.
4,5(86 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ