Для каждого из следующих уравнений: 1) сумма всех корней; 2) умножение всех корней; 3) сумма отрицательных корней; 4) умножение положительных корней; 5) разница между конечным большим и самым маленьким корнями, 6) Найдите отношение конечного большого положительного корня к конечному маленькому положительному корню:
Пусть х - время в мин., которое требуется для выполнения работы второму принтеру, соответственно х-10 мин. - время которое требуется для выполнения работы первому принтеру. Тогда 1/х - доля работы которую делает второй за 1 минуту, соответственно 1/(x-10) -первый. Составляем уравнение: 1/x + 1/(x-10) = 1/12 - доля работы которую выполняют за 1 минуту оба принтера совместно. Решаем, получаем: х^2-34x+120=0, Дискриминант квадратного уравнения:D = b2 - 4ac = (-34)2 - 4·1·120 = 1156 - 480 = 676 Квадратное уравнение имеет два действительных корня: x1 = 34 - √6762·1 = 34 - 262 = 82 = 4 x2 = 34 + √6762·1 = 34 + 262 = 602 = 30, корень 4 - не походит, так как 4-10 мин. = - 6 мин, время выполнения работы не может быть отрицательным, соответственно время выполнения работы первым принтером: 30- 10 = 20 мин.
---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.---.
{ 4x - 3y =12 ; | *4 { 16x - 12y = 48 ; { 16x -12y +9x +12y =48 +198 ;
{ 3x + 4y = 66. | *3 { 9x +12y =198 . { 3x +4y =66 .
---
{25x =246 ; { x =246/25 =246*4/25*4 = 9,84; { x = 9,84;
{3x +4y = 66 . { 3*9,84+ 4y =66 { y = (66 -29, 52) / 4 =9,12 .
ответ : (9,84 ; 9,12) . (x ; y)