Объяснение:
1я бригада 300 дет/час
2я бригада 300 -х дет/час
3я бригада 300 +4х дет/час
время выполнения работы
t=((1/4)/(300+300-x)) + ((3/4)/(300+300-x+300+4x))=
=(1/4)[900+3x+3(600-x)]/((600-x)(900+3x))=
=(2700/4)[1/(-3x²+900x+540000)]
t будет иметь минимальное значение при максимальном значении выражения -3x²+900x+540000
по свойству квадратичной функции так как коэффициент при х² меньше 0 то ветки параболы направлены вниз и максимум квадратичной функции будет в вершине
х=-b/2a=900/6=150 деталей в час
не контрольная!
1) b^(1/3)/29b^2 =1/ 29*b^(5/3)
2) log₃ (9а) если log₃ а = 0,3
log3 (9a) = log 3 9 + log 3 a = 2+ log 3 a = 2+0.3=2.3
3) ⁵√0,016 · ⁵√-0,02 = (0.016*-0.02)^(1/5) = ( -0.00032)^( 1/5 ) = -0.2
4) вы правильно написали
5) (2x + 14)/(x+4)(x-7) >=0
2(x+7)/(x+4)(x-7) >=0
{ x+7 >=0
{ (x+4)(x-7) >0
x >= -7
x>-4
x>7
[-7;-4) U (7;oo)
6) x-√2x^2-9x+5 = 3
√2x^2-9x+5 = x-3
2x^2-9x+5 = (x-3)^2
2x^2-9x+5=x^2-6x+9
x^2- 3x -4 = 0
D=9 +4* 1 *4 = 5^2
x=3+5/2=4
x2=3-5/2=-1
Подходит только 4