М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
Oxico127
Oxico127
24.11.2022 02:30 •  Алгебра

Скоротіть дріб
12b^8/8b^16

👇
Ответ:
deniskalopatin
deniskalopatin
24.11.2022

Объяснение:

\frac{12 {b}^{8} }{8 {b}^{16} } = \frac{3 {b}^{8} }{ {b}^{16} } = \frac{3}{ {b}^{8} }

4,6(39 оценок)
Ответ:
ladusik69
ladusik69
24.11.2022

3/2b⁸

Объяснение:

12b⁸/8b¹⁶=12/8b⁸=3/2b⁸

4,5(6 оценок)
Открыть все ответы
Ответ:
helpmepleasehelpls
helpmepleasehelpls
24.11.2022

ответ: 1) (-4; -1.5) U (¹/₃; +oo) 2) (-oo; -1) U (2; 4)

Объяснение:

подобные неравенства решаются методом интервалов))

что при умножении, что при делении правила получения знака результата одинаковы:

"+" на "+" будет "+";

"-" на "+" будет "-";

"-" на "-" будет "+"... потому решения этих неравенств очень похожи))

главное --найти корни для каждого множителя/делителя или делимого

(2x+3)(3x-1)(x+4) > 0

корни: -1.5; ¹/₃; -4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)

---------(-4)++++++++(-1.5)---------(¹/₃)+++++++

ответ: (-4; -1.5) U (¹/₃; +oo)

\frac{(x-2)(x+1)}{x-4}

корни: 2; -1; 4... определяем знак на крайнем правом промежутке (на +бесконечности) --будет "+" и при переходе через корень функция меняет знак (кратных корней нет)

---------(-1)++++++++(2)---------(4)+++++++

ответ: (-oo; -1) U (2; 4)

4,6(7 оценок)
Ответ:
Пакмен007
Пакмен007
24.11.2022

Простыми преобразованиями эту задачу не решить, будем использовать арифметику остатков.

1-ое свойство, которое понадобится

a+c \equiv b + d \ (mod \ m)

То есть мы спокойно можем заменить каждое слагаемое сравнимым с ним по модулю m. То есть каждое слагаемое в нашей сумме будем рассматривать отдельно.

2-ое свойство, которое нам понадобится:

ac \equiv bd \ (mod \ m)

То есть довольно аналогичная вещь в произведении

На нашем примере все увидим

a = 5\cdot 2^{51}+21\cdot 32^{45}

Находим остатки по модулю 31

Рассматриваем первое слагаемое. Просто двойка не годится, нам нужно найти ближайшее к 31 число, превосходящее его (иногда там в отрицательные числа залезаем, например, 16 \equiv (-1) \ (mod \ 17), но сейчас это не нужно), нам повезло, это 32

Учитываем, что 32 \equiv 1 \ (mod \ 31), получаем

5\cdot 2^{51} = 5\cdot 2^1 \cdot 2^{50}=10 \cdot 2^{10\cdot 5} = 10 \cdot (2^{5})^{10}= 10\cdot 32^{10} \equiv 10 \cdot 1^{10} \ (mod \ 31)

То есть остаток от деления первого слагаемое на 31 получился равным 10. Прекрасно, аналогично со вторым

21\cdot 32^{45} \equiv 21 \cdot 1^{45}\ (mod \ 31) \equiv 21 \ (mod \ 31)

Остаток 21, чудесно. Выполняем последний шаг.

5\cdot 2^{51}+21\cdot 32^{45} \equiv 10+21 \ (mod \ 31) \equiv 31 \ (mod \ 31) \equiv 0 \ (mod \ 31)

То есть остаток от деления исходного числа на 31 равен 0, следовательно, исходное число делится на 31, что и требовалось доказать.

4,6(78 оценок)
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ