В решении.
Объяснение:
2) -24у² + (8 - у)³ + у³ <=0
В скобках куб разности, разложить по формуле:
-24у² + 512 - 192у + 24у² - у³ + у³ <= 0
После сокращений:
512 - 192у <= 0
-192y <= - 512
192y >= 512 (знак неравенства меняется при делении на -1)
у >= 512/192
y >= 8/3
Решение неравенства у∈[8/3; +∞).
На числовом луче штриховка от 8/3 ( 2 и 2/3) вправо до + бесконечности.
Кружок возле 8/3 закрашенный, значение входит в решения неравенства.
4) у³ - 27у² - (у - 9)³ > 0
В скобках куб разности, разложить по формуле:
у³ - 27у² - (у³ - 27у² + 243у - 729) > 0
Раскрыть скобки:
у³ - 27у² - у³ + 27у² - 243у + 729 > 0
После сокращений:
- 243у + 729 > 0
-243у > -729
243у < 729 (знак неравенства меняется при делении на -1)
у < 729/243
y < 3
Решение неравенства у∈(-∞; 3).
На числовом луче штриховка от - бесконечности вправо до 3.
Кружок возле 3 не закрашенный, значение не входит в решения неравенства.
В решении.
Объяснение:
Решите задачу с составления уравнения. Разность двух чисел равна 3, а разность их квадратов 69. Найдите эти числа.
х - первое число.
у - второе число.
По условию задачи система уравнений:
х - у = 3
х² - у² = 69
Выразить х через у в первом уравнении, подставить выражение во второе уравнение и вычислить у:
х = 3 + у
(3 + у)² - у² = 69
9 + 6у + у² - у² = 69
6у = 69 - 9
6у = 60
у = 60/6
у = 10 - второе число.
х = 3 + у
х = 3 + 10
х = 13 - первое число.
Проверка:
13 - 10 = 3, верно.
13² - 10² = 169 - 100 = 69, верно.
решение смотри на фотографии