М
Молодежь
К
Компьютеры-и-электроника
Д
Дом-и-сад
С
Стиль-и-уход-за-собой
П
Праздники-и-традиции
Т
Транспорт
П
Путешествия
С
Семейная-жизнь
Ф
Философия-и-религия
Б
Без категории
М
Мир-работы
Х
Хобби-и-рукоделие
И
Искусство-и-развлечения
В
Взаимоотношения
З
Здоровье
К
Кулинария-и-гостеприимство
Ф
Финансы-и-бизнес
П
Питомцы-и-животные
О
Образование
О
Образование-и-коммуникации
lear8765
lear8765
15.01.2022 06:01 •  Алгебра

Докажите что функция y=x^2-3/x-1 возрастает на любом промежутке области определения.

👇
Ответ:
sveto4ckaklana
sveto4ckaklana
15.01.2022
Между точками экстремума она как раз убывает.
4,7(15 оценок)
Открыть все ответы
Ответ:
Natalym2001
Natalym2001
15.01.2022
Характеристика мечтателя "Белые ночи " .
Настенька - главная героиня произведения, она занимает основное место, благодаря ей развиваются все события.
Она милая, доброжелательная,скромная,спокойная, чувственная и ранимая девушка.В начале знакомства с Мечтателем она показала себя с лучшей стороны, но внешность обманчива, и Мечтатель увлекается ей, хотя девушка сразу сказала: "на дружбу я готова. . . а вот влюбится нельзя вас!".
Основные события происходят в конце повести, Настенька, обиженная на того человека, которого любит, делает необдуманный шаг, решаясь строить с Мечтателем планы на будущее, но все рухнуло, так же внезапно, как и начиналось. Мечтатель снова один, Настенька ушла, предав героя. Получив на утро письмо, молодой человек долго размышлял, но у него не было чувства грусти, а даже наоборот.
Девушка долго не замечала чувств героя, да и потом просто "воспользовалась" этим, но тот факт, что она искренне любила другого человека частично извиняет её. В своем последнем письме она просила не забывать о ней и любить её.
4,4(69 оценок)
Ответ:
MostQweek
MostQweek
15.01.2022
Бино́м Нью́то́на — формула для разложения на отдельные слагаемые целой неотрицательной степени суммы двух переменных, имеющая вид

(
a
+
b
)
n
=

k
=
0
n
(
n
k
)
a
n

k
b
k
=
(
n
0
)
a
n
+
(
n
1
)
a
n

1
b
+

+
(
n
k
)
a
n

k
b
k
+

+
(
n
n
)
b
n
(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n - k} b^k = {n\choose 0}a^n + {n\choose 1}a^{n - 1}b + \dots + {n\choose k}a^{n - k}b^k + \dots + {n\choose n}b^n
где
(
n
k
)
=
n
!
k
!
(
n

k
)
!
=
C
n
k
{n\choose k}=\frac{n!}{k!(n - k)!}= C_n^k — биномиальные коэффициенты,
n
n — неотрицательное целое число.

В таком виде эта формула была известна ещё индийским и персидским математикам; Ньютон вывел формулу бинома Ньютона для более общего случая, когда показатель степени — произвольное действительное (или даже комплексное) число.
4,6(39 оценок)
Это интересно:
Новые ответы от MOGZ: Алгебра
logo
Вход Регистрация
Что ты хочешь узнать?
Спроси Mozg
Открыть лучший ответ