В первом и втором слагаемых есть одинаковая скобка - вынесем ее за скобку:
(x+y)(4a-9b) - вот и получилось 2 множителя.
Можно еще раз (разложив как разность квадратов), но мне кажется, что это лишнее.
4a(x+y) - 9b(y+x) = (x+y)(4a-9b) = (x+y)(2√a-3√b)(2√a+3√b)
Объяснение:
1.
C⁵ₓ₊₁=(3/8)*A³ₓ
(x+1)!/((x+1-5)!*5!)=(3/8)*x!/(x-3)!
(x+1)!/((x-4)!*5!)=(3/8)*x!/((x-4)!(x-3))
x!*(x+1)/5!=(3/8)*x!/(x-3)
(x+1)/5!=(3/8)/(x-3)
(x-3)*(x+1)=(3/8)*120
x²-2x-3=45
x₂-2x-48=0 D=196 √D=14
x₁=-6 ∉ x₂=8.
ответ: х=8.
2.
Cˣ⁻⁴ₓ₊₁=(7/15)*A³ₓ₊₁
(x+1)!/((x+1-(x-4))!*(x-4)!=(7/15)*(x+1)!/(x+1-3)!
(x+1)!/(5!*(x-4)!=(7/15)*(x+1)!/(x-2)!
1/(5!*(x-4)!)=(7/15)/((x-4)!*(x-3)*(x-2))
1/5!=(7/15)/((x-3)*(x-2))
15*(x-3)*(x-2)=7*5!
15*(x²-5x+6)=7*120 |÷15
x²-5x+6=7*8
x²-5x+6=56
x²-5x-50=0 D=225 √D=15
x₁=-5 ∉ x₂=10.
ответ: х=10.
4a(x+y) - 9b(y+x) = 4a(x+y) - 9b(x+y) = (x+y)(4a-9b)