Дробь является неправильной рациональной дробью, так как степени многочленов в числителе и в знаменателе одинаковые и равны 1. Значит можно выделить целую и дробную часть неправильной дроби. Так как в знаменателе стоит многочлен 1 степени (линейная ф-ция) х+1, то и в числителе выделим х+1. Для этого надо вынести за скобки коэффициент (-5), который стоит перед х, и записать в скобках (х+1). Так как -5(х+1)=-5х-5, то , чтобы выражение не изменилось, надо добавить (+5), получим:
.
Если в дальнейшем надо записать целую и дробную части неправильной рац. дроби, то
На рисунке 1 показана парабола y=x²-4x-5 чтобы построить симметричную ей нужно знать за что отвечает каждый коэффициент a=1 , b= -4 , c= -5
1)Коэффициент а влияет на направление ветвей параболы а > 0 – ветви вверх а < 0 – ветви вниз 2)Коэффициент b влияет на расположение вершины параболы. Если b = 0 - вершина лежит на оси Оу Если b>0 - парабола в левой части Если b<0 - парабола в правой части 3)Коэффициент с показывает точку пересечения с осью Оу
теперь анализируем нашу параболу -ветви вверх -вершина 2; -9 -пересечение с Оу 0; -5
Чтобы построить симметричную нужно сделать второй и третий коэффициент положительными ответ : y=x²+4x+5
Дробь
является неправильной рациональной дробью, так как степени многочленов в числителе и в знаменателе одинаковые и равны 1. Значит можно выделить целую и дробную часть неправильной дроби. Так как в знаменателе стоит многочлен 1 степени (линейная ф-ция) х+1, то и в числителе выделим х+1. Для этого надо вынести за скобки коэффициент (-5), который стоит перед х, и записать в скобках (х+1). Так как -5(х+1)=-5х-5, то , чтобы выражение не изменилось, надо добавить (+5), получим:
Если в дальнейшем надо записать целую и дробную части неправильной рац. дроби, то