Формула площади треугольника имеет вид: S=ab/2, где a - высота, b - основание. Примем формулу площади треугольника за функцию S(b), выразим a через b, чтобы функция была от одной независимой переменной b. Высоту a вычислим с т.Пифагора: a=√2²-(b/2)²= Подставляя полученное выражение в формулу функции S(b) вместо а получим: . Нужно найти значение переменной b такое, при котором функция S(b) примет наибольшее значение Найдем производную: Приравняем её к нулю и найдем точки экстремума, в одной из которых функция принимает искомое наибольшее значение: S(2√2)=2 S(-2√2)=-2 В точке b=2√2 функция S(b) принимает наибольшее значение. Т.о, основание треугольника должно быть равным 2√2, чтобы площадь треугольника была наибольшей.
x ∈ (–∞; –3] ∪ [–1; +∞)
и
x ≤ –3; x ≥ –1
Объяснение: